×

Quantum robustness of the toric code in a parallel field on the honeycomb and triangular lattice. (English) Zbl 07917663

Summary: We investigate the quantum robustness of the topological order in the toric code on the honeycomb lattice in the presence of a uniform parallel field. For a field in \(z\)-direction, the low-energy physics is in the flux-free sector and can be mapped to the transverse-field Ising model on the honeycomb lattice. One finds a second-order quantum phase transition in the 3D \(\text{Ising}^\star\) universality class for both signs of the field. The same is true for a postive field in \(x\)-direction where an analogue mapping in the charge-free sector yields a ferromagnetic transverse-field Ising model on the triangular lattice and the phase transition is still 3D \(\text{Ising}^\star\). In contrast, for negative \(x\)-field, the charge-free sector is mapped to the highly frustrated antiferromagnetic transverse-field Ising model on the triangular lattice which is known to host a quantum phase transition in the 3D \(XY^\star\) universality class. Further, the charge-free sector does not always contain the low-energy physics for negative \(x\)-fields and a first-order phase transition to the polarized phase in the charge-full sector takes place at larger negative field values. We quantify the location of this transition by comparing quantum Monte Carlo simulations and high-field series expansions. The full extension of the topological phase in the presence of \(x\)- and \(z\)-fields is determined by perturbative linked-cluster expansions using a full graph decomposition. Extrapolating the high-order series of the charge and the flux gap allows to estimate critical exponents of the gap closing. This analysis indicates that the topological order breaks down by critical lines of 3D \(\text{Ising}^\star\) and 3D \(XY^\star\) type with interesting potential multi-critical crossing points. All findings for the toric code on the honeycomb lattice can be transferred exactly to the toric code on the triangular lattice.

MSC:

82Bxx Equilibrium statistical mechanics
81Rxx Groups and algebras in quantum theory
82-XX Statistical mechanics, structure of matter

References:

[1] X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41, 9377 (1990), doi:10.1103/PhysRevB.41.9377. · doi:10.1103/PhysRevB.41.9377
[2] X. G. Wen, Topological order in rigid states, Int. J. Mod. Phys. B 04, 239 (1990), doi:10.1142/S0217979290000139. · doi:10.1142/S0217979290000139
[3] X.-G. Wen, Quantum field theory of many-body systems: From the origin of sound to an origin of light and electrons, Oxford University Press, Oxford, UK, ISBN 9780191713019 (2007), doi:10.1093/acprof:oso/9780199227259.001.0001. · doi:10.1093/acprof:oso/9780199227259.001.0001
[4] R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983), doi:10.1103/PhysRevLett.50.1395. · doi:10.1103/PhysRevLett.50.1395
[5] D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-dimensional magneto-transport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982), doi:10.1103/PhysRevLett.48.1559. · doi:10.1103/PhysRevLett.48.1559
[6] L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010), doi:10.1038/nature08917. · doi:10.1038/nature08917
[7] L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502 (2016), doi:10.1088/0034-4885/80/1/016502. · doi:10.1088/0034-4885/80/1/016502
[8] G. Semeghini et al., Probing topological spin liquids on a programmable quantum simula-tor, Science 374, 1242 (2021), doi:10.1126/science.abi8794. · doi:10.1126/science.abi8794
[9] R. Verresen, M. D. Lukin and A. Vishwanath, Prediction of toric code topological order from Rydberg blockade, Phys. Rev. X 11, 031005 (2021), doi:10.1103/physrevx.11.031005. · doi:10.1103/physrevx.11.031005
[10] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin and S. Sachdev, Quantum phases of Rydberg atoms on a kagome lattice, Proc. Natl. Acad. Sci. 118, e2015785118 (2021), doi:10.1073/pnas.2015785118. · doi:10.1073/pnas.2015785118
[11] P. S. Tarabunga, F. M. Surace, R. Andreoni, A. Angelone and M. Dalmonte, Gauge-theoretic origin of Rydberg quantum spin liquids, Phys. Rev. Lett. 129, 195301 (2022), doi:10.1103/PhysRevLett.129.195301. · doi:10.1103/PhysRevLett.129.195301
[12] Z. Yan, Y.-C. Wang, R. Samajdar, S. Sachdev and Z. Y. Meng, Emergent glassy be-havior in a Kagome Rydberg atom array, Phys. Rev. Lett. 130, 206501 (2023), doi:10.1103/physrevlett.130.206501. · doi:10.1103/physrevlett.130.206501
[13] J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B 37, 1 (1977), doi:10.1007/BF02727953. · doi:10.1007/BF02727953
[14] F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48, 1144 (1982), doi:10.1103/PhysRevLett.48.1144. · doi:10.1103/PhysRevLett.48.1144
[15] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/s0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/s0003-4916(02)00018-0
[16] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008), doi:10.1103/RevModPhys.80.1083. · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[17] F. A. Bais, B. J. Schroers and J. K. Slingerland, Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89, 181601 (2002), doi:10.1103/PhysRevLett.89.181601. · doi:10.1103/PhysRevLett.89.181601
[18] F. A. Bais and C. J. M. Mathy, The breaking of quantum double symmetries by defect con-densation, Ann. Phys. 322, 552 (2007), doi:10.1016/j.aop.2006.05.010. · Zbl 1326.81102 · doi:10.1016/j.aop.2006.05.010
[19] F. A. Bais and J. K. Slingerland, Condensate-induced transitions between topologically or-dered phases, Phys. Rev. B 79, 045316 (2009), doi:10.1103/PhysRevB.79.045316. · doi:10.1103/PhysRevB.79.045316
[20] F. J. Burnell, S. H. Simon and J. K. Slingerland, Condensation of achiral simple currents in topological lattice models: Hamiltonian study of topological symmetry breaking, Phys. Rev. B 84, 125434 (2011), doi:10.1103/PhysRevB.84.125434. · doi:10.1103/PhysRevB.84.125434
[21] F. J. Burnell, Anyon condensation and its applications, Annu. Rev. Condens. Matter Phys. 9, 307 (2018), doi:10.1146/annurev-conmatphys-033117-054154. · doi:10.1146/annurev-conmatphys-033117-054154
[22] S. Trebst, P. Werner, M. Troyer, K. Shtengel and C. Nayak, Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension, Phys. Rev. Lett. 98, 070602 (2007), doi:10.1103/PhysRevLett.98.070602. · doi:10.1103/PhysRevLett.98.070602
[23] A. Hamma and D. A. Lidar, Adiabatic preparation of topological order, Phys. Rev. Lett. 100, 030502 (2008), doi:10.1103/PhysRevLett.100.030502. · doi:10.1103/PhysRevLett.100.030502
[24] J. Yu, S.-P. Kou and X.-G. Wen, Topological quantum phase transition in the transverse Wen-plaquette model, Europhys. Lett. 84, 17004 (2008), doi:10.1209/0295-5075/84/17004. · doi:10.1209/0295-5075/84/17004
[25] J. Vidal, S. Dusuel and K. P. Schmidt, Low-energy effective theory of the toric code model in a parallel magnetic field, Phys. Rev. B 79, 033109 (2009), doi:10.1103/PhysRevB.79.033109. · doi:10.1103/PhysRevB.79.033109
[26] J. Vidal, R. Thomale, K. P. Schmidt and S. Dusuel, Self-duality and bound states of the toric code model in a transverse field, Phys. Rev. B 80, 081104 (2009), doi:10.1103/PhysRevB.80.081104. · doi:10.1103/PhysRevB.80.081104
[27] S. Dusuel, M. Kamfor, K. P. Schmidt, R. Thomale and J. Vidal, Bound states in two-dimensional spin systems near the Ising limit: A quantum finite-lattice study, Phys. Rev. B 81, 064412 (2010), doi:10.1103/PhysRevB.81.064412. · doi:10.1103/PhysRevB.81.064412
[28] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev and P. C. E. Stamp, Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model, Phys. Rev. B 82, 085114 (2010), doi:10.1103/PhysRevB.82.085114. · doi:10.1103/PhysRevB.82.085114
[29] F. Wu, Y. Deng and N. Prokof’ev, Phase diagram of the toric code model in a parallel mag-netic field, Phys. Rev. B 85, 195104 (2012), doi:10.1103/PhysRevB.85.195104. · doi:10.1103/PhysRevB.85.195104
[30] S. Dusuel, M. Kamfor, R. Orús, K. P. Schmidt and J. Vidal, Robustness of a perturbed topological phase, Phys. Rev. Lett. 106, 107203 (2011), doi:10.1103/PhysRevLett.106.107203. · doi:10.1103/PhysRevLett.106.107203
[31] K. P. Schmidt, Persisting topological order via geometric frustration, Phys. Rev. B 88, 035118 (2013), doi:10.1103/PhysRevB.88.035118. · doi:10.1103/PhysRevB.88.035118
[32] S. S. Jahromi, M. Kargarian, S. F. Masoudi and K. P. Schmidt, Robustness of a topological phase: Topological color code in a parallel magnetic field, Phys. Rev. B 87, 094413 (2013), doi:10.1103/PhysRevB.87.094413. · doi:10.1103/PhysRevB.87.094413
[33] S. C. Morampudi, C. von Keyserlingk and F. Pollmann, Numerical study of a tran-sition between 2 topologically ordered phases, Phys. Rev. B 90, 035117 (2014), doi:10.1103/PhysRevB.90.035117. · doi:10.1103/PhysRevB.90.035117
[34] M. D. Schulz and F. J. Burnell, Frustrated topological symmetry breaking: Ge-ometrical frustration and anyon condensation, Phys. Rev. B 94, 165110 (2016), doi:10.1103/PhysRevB.94.165110. · doi:10.1103/PhysRevB.94.165110
[35] Y. Zhang, R. G. Melko and E.-A. Kim, Machine learning 2 quantum spin liquids with quasi-particle statistics, Phys. Rev. B 96, 245119 (2017), doi:10.1103/PhysRevB.96.245119. · doi:10.1103/PhysRevB.96.245119
[36] L. Vanderstraeten, M. Mariën, J. Haegeman, N. Schuch, J. Vidal and F. Verstraete, Bridg-ing perturbative expansions with tensor networks, Phys. Rev. Lett. 119, 070401 (2017), doi:10.1103/PhysRevLett.119.070401. · doi:10.1103/PhysRevLett.119.070401
[37] R. Wiedmann, L. Lenke, M. R. Walther, M. Mühlhauser and K. P. Schmidt, Quantum critical phase transition between two topologically ordered phases in the Ising toric code bilayer, Phys. Rev. B 102, 214422 (2020), doi:10.1103/PhysRevB.102.214422. · doi:10.1103/PhysRevB.102.214422
[38] W.-T. Xu, F. Pollmann and M. Knap, Critical behavior of Fredenhagen-Marcu string order parameters at topological phase transitions with emergent higher-form symmetries, (arXiv preprint) doi:10.48550/arXiv.2402.00127. · doi:10.48550/arXiv.2402.00127
[39] M. Iqbal and N. Schuch, Entanglement order parameters and critical behavior for topological phase transitions and beyond, Phys. Rev. X 11, 041014 (2021), doi:10.1103/PhysRevX.11.041014. · doi:10.1103/PhysRevX.11.041014
[40] M. Schuler, S. Whitsitt, L.-P. Henry, S. Sachdev and A. M. Läuchli, Universal signatures of quantum critical points from finite-size torus spectra: A window into the operator con-tent of higher-dimensional conformal field theories, Phys. Rev. Lett. 117, 210401 (2016), doi:10.1103/PhysRevLett.117.210401. · doi:10.1103/PhysRevLett.117.210401
[41] E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields, Phys. Rev. D 19, 3682 (1979), doi:10.1103/PhysRevD.19.3682. · doi:10.1103/PhysRevD.19.3682
[42] C. XU, Unconventional quantum critical points, Int. J. Mod. Phys. B 26, 1230007 (2012), doi:10.1142/S0217979212300071. · Zbl 1260.82034 · doi:10.1142/S0217979212300071
[43] S. V. Isakov, R. G. Melko and M. B. Hastings, Universal signatures of fractionalized quantum critical points, Science 335, 193 (2012), doi:10.1126/science.1212207. · doi:10.1126/science.1212207
[44] K. Liu, J. Nissinen, Z. Nussinov, R.-J. Slager, K. Wu and J. Zaanen, Classification of nematic order in 2 + 1 dimensions: Dislocation melting and O(2)/Z N lattice gauge theory, Phys. Rev. B 91, 075103 (2015), doi:10.1103/PhysRevB.91.075103. · doi:10.1103/PhysRevB.91.075103
[45] M. Schuler, L.-P. Henry, Y.-M. Lu and A. Läuchli, Emergent XY* transition driven by symmetry fractionalization and anyon condensation, SciPost Phys. 14, 001 (2023), doi:10.21468/SciPostPhys.14.1.001. · Zbl 07900017 · doi:10.21468/SciPostPhys.14.1.001
[46] M. Kamfor, S. Dusuel, J. Vidal and K. P. Schmidt, Spectroscopy of a topological phase, Phys. Rev. B 89, 045411 (2014), doi:10.1103/PhysRevB.89.045411. · doi:10.1103/PhysRevB.89.045411
[47] M. Mühlhauser, V. Kott and K. Schmidt, Incorporating non-local anyonic statistics into a graph decomposition, SciPost Phys. Core 7, 031 (2024), doi:10.21468/SciPostPhysCore.7.2.031. · doi:10.21468/SciPostPhysCore.7.2.031
[48] C. Knetter and G. S. Uhrig, Perturbation theory by flow equations: Dimerized and frustrated S = 1/2 chain, Eur. Phys. J. B 13, 209 (2000), doi:10.1007/s100510050026. · doi:10.1007/s100510050026
[49] C. Knetter, K. P. Schmidt and G. S. Uhrig, The structure of operators in effective particle-conserving models, J. Phys. A: Math. Gen. 36, 7889 (2003), doi:10.1088/0305-4470/36/29/302. · Zbl 1039.82026 · doi:10.1088/0305-4470/36/29/302
[50] J. Vidal, R. Thomale, K. P. Schmidt and S. Dusuel, Self-duality and bound states of the toric code model in a transverse field, Phys. Rev. B 80, 081104 (2009), doi:10.1103/PhysRevB.80.081104. · doi:10.1103/PhysRevB.80.081104
[51] M. P. Gelfand, Series expansions for excited states of quantum lattice models, Solid State Commun. 98, 11 (1996), doi:10.1016/0038-1098(96)00051-8. · doi:10.1016/0038-1098(96)00051-8
[52] M. P. Gelfand and R. R. P. Singh, High-order convergent expansions for quantum many particle systems, Adv. Phys. 49, 93 (2000), doi:10.1080/000187300243390. · doi:10.1080/000187300243390
[53] J. Oitmaa, C. Hamer and W. Zheng, Series expansion methods for strongly interacting lat-tice models, Cambridge University Press, Cambridge, UK, ISBN 9780521842426 (2006), doi:10.1017/CBO9780511584398. · Zbl 1192.82003 · doi:10.1017/CBO9780511584398
[54] M. Mühlhauser and K. P. Schmidt, Linked cluster expansions via hypergraph decomposi-tions, Phys. Rev. E 105, 064110 (2022), doi:10.1103/PhysRevE.105.064110. · doi:10.1103/PhysRevE.105.064110
[55] A. J. Guttmann, Asymptotic analysis of power-series expansions, in Phase transi-tions and critical phenomena, Academic Press, Cambridge, Massachusetts, USA, ISBN 9780122203138 (1989).
[56] S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, UK, ISBN 9780521514682 (2011), doi:10.1017/CBO9780511973765. · Zbl 1233.82003 · doi:10.1017/CBO9780511973765
[57] S. Biswas, G. Rakala and K. Damle, Quantum cluster algorithm for frustrated Ising models in a transverse field, Phys. Rev. B 93, 235103 (2016), doi:10.1103/PhysRevB.93.235103. · doi:10.1103/PhysRevB.93.235103
[58] S. Biswas and K. Damle, Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice, Phys. Rev. B 97, 085114 (2018), doi:10.1103/PhysRevB.97.085114. · doi:10.1103/PhysRevB.97.085114
[59] R. Moessner and S. L. Sondhi, Resonating valence bond phase in the triangular lattice quan-tum dimer model, Phys. Rev. Lett. 86, 1881 (2001), doi:10.1103/PhysRevLett.86.1881. · doi:10.1103/PhysRevLett.86.1881
[60] R. Moessner and S. L. Sondhi, Ising models of quantum frustration, Phys. Rev. B 63, 224401 (2001), doi:10.1103/PhysRevB.63.224401. · doi:10.1103/PhysRevB.63.224401
[61] S. V. Isakov and R. Moessner, Interplay of quantum and thermal fluctuations in a frustrated magnet, Phys. Rev. B 68, 104409 (2003), doi:10.1103/physrevb.68.104409. · doi:10.1103/physrevb.68.104409
[62] G. H. Wannier, Antiferromagnetism. The triangular Ising net, Phys. Rev. 79, 357 (1950), doi:10.1103/PhysRev.79.357. · Zbl 0038.41904 · doi:10.1103/PhysRev.79.357
[63] G. H. Wannier, Antiferromagnetism. The triangular Ising net, Phys. Rev. B 7, 5017 (1973), doi:10.1103/PhysRevB.7.5017. · doi:10.1103/PhysRevB.7.5017
[64] A. W. Sandvik, Stochastic series expansion method for quantum Ising models with arbitrary interactions, Phys. Rev. E 68, 056701 (2003), doi:10.1103/PhysRevE.68.056701. · doi:10.1103/PhysRevE.68.056701
[65] A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B 43, 5950 (1991), doi:10.1103/PhysRevB.43.5950. · doi:10.1103/PhysRevB.43.5950
[66] A. W. Sandvik, A generalization of Handscomb’s quantum Monte Carlo scheme-application to the 1D Hubbard model, J. Phys. A: Math. Gen. 25, 3667 (1992), doi:10.1088/0305-4470/25/13/017. · doi:10.1088/0305-4470/25/13/017
[67] A. W. Sandvik, A. Avella and F. Mancini, Computational studies of quantum spin systems, AIP Conf. Proc. 1297, 135 (2010), doi:10.1063/1.3518900. · doi:10.1063/1.3518900
[68] J. A. Koziol, A. Langheld, S. C. Kapfer and K. P. Schmidt, Quantum-critical properties of the long-range transverse-field Ising model from quantum Monte Carlo simulations, Phys. Rev. B 103, 245135 (2021), doi:10.1103/PhysRevB.103.245135. · doi:10.1103/PhysRevB.103.245135
[69] A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory, Phys. Rep. 368, 549 (2002), doi:10.1016/s0370-1573(02)00219-3. · Zbl 0997.82019 · doi:10.1016/s0370-1573(02)00219-3
[70] S. V. Isakov, P. Fendley, A. W. W. Ludwig, S. Trebst and M. Troyer, Dynamics at and near conformal quantum critical points, Phys. Rev. B 83, 125114 (2011), doi:10.1103/physrevb.83.125114. · doi:10.1103/physrevb.83.125114
[71] H. W. J. Blöte and Y. Deng, Cluster Monte Carlo simulation of the transverse Ising model, Phys. Rev. E 66, 066110 (2002), doi:10.1103/PhysRevE.66.066110. · doi:10.1103/PhysRevE.66.066110
[72] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, J. High Energy Phys. 08, 036 (2016), doi:10.1007/jhep08(2016)036. · Zbl 1390.81227 · doi:10.1007/jhep08(2016)036
[73] H. -X He, C. J. Hamer and J. Oitmaa, High-temperature series expansions for the (2 + 1)-dimensional Ising model, J. Phys. A: Math. Gen. 23, 1775 (1990), doi:10.1088/0305-4470/23/10/018. · doi:10.1088/0305-4470/23/10/018
[74] M. Powalski, K. Coester, R. Moessner and K. P. Schmidt, Disorder by disorder and flat bands in the kagome transverse field Ising model, Phys. Rev. B 87, 054404 (2013), doi:10.1103/PhysRevB.87.054404. · doi:10.1103/PhysRevB.87.054404
[75] M. Hasenbusch, Monte Carlo study of an improved clock model in three dimensions, Phys. Rev. B 100, 224517 (2019), doi:10.1103/PhysRevB.100.224517. · doi:10.1103/PhysRevB.100.224517
[76] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su and A. Vichi, Carving out OPE space and precise O(2) model critical exponents, J. High Energy Phys. 06, 142 (2020), doi:10.1007/jhep06(2020)142. · Zbl 1437.81076 · doi:10.1007/jhep06(2020)142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.