×

A proximal gradient method with double inertial steps for minimization problems involving demicontractive mappings. (English) Zbl 07917596

MSC:

90C52 Methods of reduced gradient type
47J25 Iterative procedures involving nonlinear operators

References:

[1] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B, 58, 267-288, 1996 · Zbl 0850.62538 · doi:10.1111/j.2517-6161.1996.tb02080.x
[2] Deep, A.; Abbas, S.; Singh, B.; Alharthi, M. R.; Nisar, K. S., Solvability of functional stochastic integral equations via Darbo’s fixed point theorem, Alex. Eng. J., 60, 6, 5631-5636, 2021 · doi:10.1016/j.aej.2021.04.024
[3] Qu, Z.; Liu, C.; Zhu, J.; Zhang, Y.; Zhou, Y.; Wang, L., Two-step proximal gradient descent algorithm for photoacoustic signal unmixing, J. Photoacoust., 27, 2022 · doi:10.1016/j.pacs.2022.100379
[4] Jiang, X.; Zeng, X.; Sun, J.; Chen, J., Distributed proximal gradient algorithm for non-convex optimization over time-varying networks, IEEE Trans. Control Netw. Syst., 10, 2, 1005-1017, 2023 · doi:10.1109/TCNS.2022.3213706
[5] Khowaja, S. A.; Lee, I. H.; Dev, K.; Jarwar, M. A.; Qureshi, N. M.F., Get your foes fooled: proximal gradient split learning for defense against model inversion attacks on iomt data, IEEE Trans. Netw. Sci. Eng., 10, 5, 2607-2616, 2023 · doi:10.1109/TNSE.2022.3188575
[6] Mouktonglang, T.; Poochinapan, K.; Suparatulatorn, R., A parallel method for common variational inclusion and common fixed point problems with applications, Carpath. J. Math., 39, 1, 189-200, 2023 · Zbl 1538.65640 · doi:10.37193/CJM.2023.01.12
[7] Suantai, S.; Inkrong, P.; Cholamjiak, P., Forward-backward-forward algorithms involving two inertial terms for monotone inclusions, Comput. Appl. Math., 42, 6, 2023 · Zbl 1538.65641 · doi:10.1007/s40314-023-02388-6
[8] Jaggi, M.; Suykens, J. A.K.; Signoretto, M.; Argyriou, A., An equivalence between the Lasso and support vector machines, Regularization, Optimization, Kernels, and Support Vector Machines, 1-26, 2014, Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 1305.68030
[9] Li, Y.; Bontcheva, K.; Cunningham, H., Adapting SVM for data sparseness and imbalance: a case study in information extraction, Nat. Lang. Eng., 15, 2, 241-271, 2009 · doi:10.1017/S1351324908004968
[10] Kumar, A.; Chatterjee, J. M.; Díaz, V. G., A novel hybrid approach of SVM combined with NLP and probabilistic neural network for email phishing, Int. J. Electr. Comput Syst. Eng., 10, 1, 486, 2020
[11] Salloum, S.; Gaber, T.; Vadera, S.; Shaalan, K., A systematic literature review on phishing email detection using natural language processing techniques, IEEE Access, 10, 65703-65727, 2022 · doi:10.1109/ACCESS.2022.3183083
[12] Afrin, S.; Shamrat, F. J.M.; Nibir, T. I.; Muntasim, M. F.; Moharram, M. S.; Imran, M. M.; Abdulla, M., Supervised machine learning based liver disease prediction approach with LASSO feature selection, Bull. Electr. Eng. Inform., 10, 6, 3369-3376, 2021 · doi:10.11591/eei.v10i6.3242
[13] Cholamjiak, W.; Das, S., A modified projective forward-backward splitting algorithm for variational inclusion problems to predict Parkinson’s disease, Appl. Math. Sci. Eng., 32, 1, 2024 · doi:10.1080/27690911.2024.2314650
[14] Passty, G., Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72, 2, 383-390, 1979 · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[15] Polyak, B. T., Introduction to Optimization, 1987, New York: Optim. Softw. Inc., New York
[16] Nesterov, Y. E., A method for solving the convex programming problem with convergence rate \(O(\frac{1}{k^2})\), Sov. Math. Dokl., 27, 2, 372-376, 1983 · Zbl 0535.90071
[17] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 1, 183-202, 2009 · Zbl 1175.94009 · doi:10.1137/080716542
[18] Ross, I. M., Generating Nesterov’s accelerated gradient algorithm by using optimal control theory for optimization, J. Comput. Appl. Math., 423, 2023 · Zbl 1524.65236 · doi:10.1016/j.cam.2022.114968
[19] Oka, T.; Misawa, R.; Yamada, T., Nesterov’s acceleration for level set-based topology optimization using reaction-diffusion equations, Appl. Math. Model., 120, 57-78, 2023 · Zbl 1525.35222 · doi:10.1016/j.apm.2023.03.024
[20] Kesornprom, S.; Cholamjiak, P., A modified inertial proximal gradient method for minimization problems and applications, AIMS Math., 7, 5, 8147-8161, 2022 · doi:10.3934/math.2022453
[21] Kankam, K.; Cholamjiak, P., Inertial proximal gradient method using adaptive stepsize for convex minimization problems, Thai J. Math., 21, 2, 277-287, 2023 · Zbl 07829174
[22] Mann, W. R., Mean value methods in iteration, Proc. Am. Math. Soc., 4, 3, 506-510, 1953 · Zbl 0050.11603 · doi:10.1090/S0002-9939-1953-0054846-3
[23] Maingé, P. E., Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219, 223-236, 2008 · Zbl 1156.65054 · doi:10.1016/j.cam.2007.07.021
[24] Dong, Q. L.; Cho, Y. J.; Rassias, T. M.; Rassias, T. M., General inertial Mann algorithms and their convergence analysis for nonexpansive mappings, Applications of Nonlinear Analysis, 175-191, 2018 · Zbl 1407.47007 · doi:10.1007/978-3-319-89815-5_7
[25] Zhou, H.; Qin, X., Fixed Points of Nonlinear Operators. Iterative Methods, 2020, Berlin: de Gruyter, Berlin · Zbl 1440.47001 · doi:10.1515/9783110667097
[26] Brézis, H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, 1973, Amsterdam: North-Holland, Amsterdam · Zbl 0252.47055
[27] Hanjing, A.; Suantai, S., A fast image restoration algorithm based on a fixed point and optimization method, Mathematics, 8, 3, 2020 · doi:10.3390/math8030378
[28] Auslender, A.; Teboulle, M.; Ben-Tiba, S., A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl., 12, 31-40, 1999 · Zbl 1039.90529 · doi:10.1023/A:1008607511915
[29] Bauschke, H. H.; Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011, New York: Springer, New York · Zbl 1218.47001 · doi:10.1007/978-1-4419-9467-7
[30] Liu, H.; Yang, J., Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl., 77, 491-508, 2020 · Zbl 07342388 · doi:10.1007/s10589-020-00217-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.