×

Weak convergence of iterative methods for solving quasimonotone variational inequalities. (English) Zbl 07342388

Summary: In this work, we introduce self-adaptive methods for solving variational inequalities with Lipschitz continuous and quasimonotone mapping(or Lipschitz continuous mapping without monotonicity) in real Hilbert space. Under suitable assumptions, the convergence of algorithms are established without the knowledge of the Lipschitz constant of the mapping. The results obtained in this paper extend some recent results in the literature. Some preliminary numerical experiments and comparisons are reported.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
90C25 Convex programming
90C30 Nonlinear programming
90C52 Methods of reduced gradient type
Full Text: DOI

References:

[1] Cottle, RW; Yao, JC, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75, 281-295 (1992) · Zbl 0795.90071 · doi:10.1007/BF00941468
[2] Ye, ML; He, YR, A double projection method for solving variational inequalities without monotonicity, Comput. Optim. Appl., 60, 141-150 (2015) · Zbl 1308.90184 · doi:10.1007/s10589-014-9659-7
[3] Langenberg, N., An interior proximal method for a class of quasimonotone variational inequalities, J. Optim. Theory Appl., 155, 902-922 (2012) · Zbl 1257.90104 · doi:10.1007/s10957-012-0111-9
[4] Brito, AS; da Cruz Neto, JX; Lopes, JO; Oliveira, PR, Interior proximal algorithm for quasiconvex programming problems and variational inequalities with linear constraints, J. Optim. Theory Appl., 154, 217-234 (2012) · Zbl 1273.90238 · doi:10.1007/s10957-012-0002-0
[5] Korpelevich, GM, The extragradient method for finding saddle points and other problem, Ekonomika i Matematicheskie Metody, 12, 747-756 (1976) · Zbl 0342.90044
[6] Noor, MA, Some developments in general variational inequalities, Appl. Math. Comput., 152, 199-277 (2004) · Zbl 1134.49304
[7] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018 · doi:10.1007/s10957-010-9757-3
[8] Tseng, P., A modified forward-backward splitting method for maximal monotone mapping, SIAM J. Control Optim., 38, 431-446 (2000) · Zbl 0997.90062 · doi:10.1137/S0363012998338806
[9] Solodov, MV; Svaiter, BF, A new projection method for monotone variational inequalities, SIAM J. Control Optim., 37, 765-776 (1999) · Zbl 0959.49007 · doi:10.1137/S0363012997317475
[10] Malitsky, YuV, Projected reflected gradient methods for variational inequalities, SIAM J. Optim., 25, 1, 502-520 (2015) · Zbl 1314.47099 · doi:10.1137/14097238X
[11] Facchinei, F.; Pang, J-S, Finite-Dimensional Variational Inequalities and Complementarity problem (2003), New York: Springer, New York · Zbl 1062.90002
[12] Iusem, AN; Svaiter, BF, A variant of Korpelevich’s method for variational inequalities with a new search strategy, Optimization, 42, 309-321 (1997) · Zbl 0891.90135 · doi:10.1080/02331939708844365
[13] Duong, VT; Dang, VH, Weak and strong convergence throrems for variational inequality problems, Numer. Algorithm, 78, 4, 1045-1060 (2018) · Zbl 1398.65376 · doi:10.1007/s11075-017-0412-z
[14] Mainge, F., A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47, 1499-1515 (2008) · Zbl 1178.90273 · doi:10.1137/060675319
[15] Dong, QL; Cho, YJ; Zhong, L.; Rassias, TM, Inertial projection and contraction algorithms for variational inequalities, J. Global Optim., 70, 3, 687-704 (2018) · Zbl 1390.90568 · doi:10.1007/s10898-017-0506-0
[16] Rapeepan, K.; Satit, S., Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 163, 399-412 (2014) · Zbl 1305.49012 · doi:10.1007/s10957-013-0494-2
[17] Yekini, S.; Olaniyi, SI, Strong convergence result for monotone variational inequalities, Numer. Algorithm, 76, 259-282 (2017) · Zbl 06788836 · doi:10.1007/s11075-016-0253-1
[18] Antipin, AS, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika i Matematicheskie Metody, 12, 6, 1164-1173 (1976) · Zbl 0368.90115
[19] Yang, J.; Liu, HW, Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algorithm, 80, 741-752 (2019) · Zbl 1493.47107 · doi:10.1007/s11075-018-0504-4
[20] Yang, J.; Liu, HW; Liu, ZX, Modified subgradient extragradient algorithms for solving monotone variational inequalities, Optimization, 67, 12, 2247-2258 (2018) · Zbl 1415.49010 · doi:10.1080/02331934.2018.1523404
[21] Yang, J.; Liu, HW, A modified projected gradient method for monotone variational inequalities, J. Optim. Theory Appl., 179, 1, 197-211 (2018) · Zbl 1506.47099 · doi:10.1007/s10957-018-1351-0
[22] Phan, TV, On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities, J. Optim. Theory Appl., 176, 399-409 (2018) · Zbl 1442.47052 · doi:10.1007/s10957-017-1214-0
[23] Khobotov, EN, Modification of the extra-gradient method for solving variational inequalities and certain optimization problems, USSR Comput. Math. Math. Phys., 27, 120-127 (1987) · Zbl 0665.90078 · doi:10.1016/0041-5553(87)90058-9
[24] Tinti, F., Numerical solution for pseudomonotone variational inequality problems by extragradient methods, Var. Anal. Appl., 79, 1101-1128 (2004) · Zbl 1093.49007
[25] Hieu, DV; Anh, PK; Muu, LD, Modified extragradient-like algorithms with new stepsizes for variational inequalities, Comput. Optim. Appl., 73, 913-932 (2019) · Zbl 07066034 · doi:10.1007/s10589-019-00093-x
[26] Hieu, D.V., Cho, Y.J., Xiao, Y.-B.: Golden ratio algorithms with new stepsize rules for variational inequalities. Math. Methods Appl. Sci. (2019). 10.1002/mma.5703 · Zbl 1512.90229
[27] Thong, DV; Hieu, DV, Strong convergence of extragradient methods with a new step size for solving variational inequality problems, Comput. Appl. Math., 38, 136 (2019) · Zbl 1438.65139 · doi:10.1007/s40314-019-0899-0
[28] Marcotte, P.; Zhu, DL, A cutting plane method for solving quasimonotone variational inequalities, Comput. Optim. Appl., 20, 317-324 (2001) · Zbl 1054.90073 · doi:10.1023/A:1011219303531
[29] Sun, DF, A new step-size skill for solving a class of nonlinear equations, J. Comput. Math., 13, 357-368 (1995) · Zbl 0854.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.