×

Emergence of \(R^4\)-terms in M-theory. (English) Zbl 07917236

Summary: It has been recently suggested that the strong Emergence Proposal is realized in M-theory limits by integrating out all light towers of states with a typical mass scale not larger than the species scale, i.e. the eleventh dimensional Planck mass. Within the BPS sector, these are transverse \(M2\)- and \(M5\)-branes, that can be wrapped and particle-like, carrying Kaluza-Klein momentum along the compact directions. We provide additional evidence for this picture by revisiting and investigating further the computation of \(R^4\)-interactions in M-theory à la Green-Gutperle-Vanhove. A central aspect is a novel UV-regularization of Schwinger-like integrals, whose actual meaning and power we clarify by first applying it to string perturbation theory. We consider then toroidal compactifications of M-theory and provide evidence that integrating out all light towers of states via Schwinger-like integrals thus regularized yields the complete result for \(R^4\)-interactions. In particular, this includes terms that are tree-level, one-loop and space-time instanton corrections from the weakly coupled point of view. Finally, we comment on the conceptual difference of our approach to earlier closely related work by Kiritsis-Pioline and Obers-Pioline, leading to a correspondence between two types of constrained Eisenstein series.

MSC:

81Txx Quantum field theory; related classical field theories
83Exx Unified, higher-dimensional and super field theories
81-XX Quantum theory

References:

[1] Palti, E., The Swampland: Introduction and Review, Fortsch. Phys., 67, 1900037, 2019 · Zbl 1527.83096 · doi:10.1002/prop.201900037
[2] N.B. Agmon, A. Bedroya, M.J. Kang and C. Vafa, Lectures on the string landscape and the Swampland, arXiv:2212.06187 [INSPIRE].
[3] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21, 2007 · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[4] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The String landscape, black holes and gravity as the weakest force, JHEP, 06, 060, 2007 · doi:10.1088/1126-6708/2007/06/060
[5] Heidenreich, B.; Reece, M.; Rudelius, T., The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff, Eur. Phys. J. C, 78, 337, 2018 · doi:10.1140/epjc/s10052-018-5811-3
[6] Grimm, TW; Palti, E.; Valenzuela, I., Infinite Distances in Field Space and Massless Towers of States, JHEP, 08, 143, 2018 · Zbl 1396.81151 · doi:10.1007/JHEP08(2018)143
[7] B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in Quantum Gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE]. · Zbl 1388.81939
[8] Corvilain, P.; Grimm, TW; Valenzuela, I., The Swampland Distance Conjecture for Kähler moduli, JHEP, 08, 075, 2019 · Zbl 1421.83112 · doi:10.1007/JHEP08(2019)075
[9] Marchesano, F.; Melotti, L., EFT strings and emergence, JHEP, 02, 112, 2023 · Zbl 1541.81138 · doi:10.1007/JHEP02(2023)112
[10] Castellano, A.; Herráez, A.; Ibáñez, LE, The emergence proposal in quantum gravity and the species scale, JHEP, 06, 047, 2023 · Zbl 07716753 · doi:10.1007/JHEP06(2023)047
[11] Blumenhagen, R.; Gligovic, A.; Paraskevopoulou, A., The emergence proposal and the emergent string, JHEP, 10, 145, 2023 · Zbl 07774750 · doi:10.1007/JHEP10(2023)145
[12] Blumenhagen, R.; Cribiori, N.; Gligovic, A.; Paraskevopoulou, A., Demystifying the Emergence Proposal, JHEP, 04, 053, 2024 · Zbl 07865623 · doi:10.1007/JHEP04(2024)053
[13] Dvali, G., Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys., 58, 528, 2010 · Zbl 1196.81258 · doi:10.1002/prop.201000009
[14] G. Dvali and M. Redi, Black Hole Bound on the Number of Species and Quantum Gravity at LHC, Phys. Rev. D77 (2008) 045027 [arXiv:0710.4344] [INSPIRE].
[15] Veneziano, G., Large N bounds on, and compositeness limit of, gauge and gravitational interactions, JHEP, 06, 051, 2002 · doi:10.1088/1126-6708/2002/06/051
[16] D. van de Heisteeg, C. Vafa, M. Wiesner and D.H. Wu, Moduli-dependent Species Scale, arXiv:2212.06841 [INSPIRE]. · Zbl 07877413
[17] N. Cribiori, D. Lüst and G. Staudt, Black hole entropy and moduli-dependent species scale, Phys. Lett. B844 (2023) 138113 [arXiv:2212.10286] [INSPIRE]. · Zbl 1531.83156
[18] van de Heisteeg, D.; Vafa, C.; Wiesner, M., Bounds on Species Scale and the Distance Conjecture, Fortsch. Phys., 71, 2300143, 2023 · Zbl 1543.83161 · doi:10.1002/prop.202300143
[19] van de Heisteeg, D.; Vafa, C.; Wiesner, M.; Wu, DH, Bounds on field range for slowly varying positive potentials, JHEP, 02, 175, 2024 · Zbl 07837549 · doi:10.1007/JHEP02(2024)175
[20] Cribiori, N.; Lüst, D.; Montella, C., Species entropy and thermodynamics, JHEP, 10, 059, 2023 · Zbl 07774664 · doi:10.1007/JHEP10(2023)059
[21] Cribiori, N.; Lüst, D., A Note on Modular Invariant Species Scale and Potentials, Fortsch. Phys., 71, 2300150, 2023 · Zbl 1543.81169 · doi:10.1002/prop.202300150
[22] van de Heisteeg, D.; Vafa, C.; Wiesner, M.; Wu, DH, Species scale in diverse dimensions, JHEP, 05, 112, 2024 · Zbl 07877413 · doi:10.1007/JHEP05(2024)112
[23] A. Castellano, A. Herráez and L.E. Ibáñez, On the Species Scale, Modular Invariance and the Gravitational EFT expansion, arXiv:2310.07708 [INSPIRE]. · Zbl 07716753
[24] Long, C.; Montero, M.; Vafa, C.; Valenzuela, I., The desert and the swampland, JHEP, 03, 109, 2023 · Zbl 07690673 · doi:10.1007/JHEP03(2023)109
[25] Blumenhagen, R.; Cribiori, N.; Gligovic, A.; Paraskevopoulou, A., Emergent M-theory limit, Phys. Rev. D, 109, L021901, 2024 · doi:10.1103/PhysRevD.109.L021901
[26] Banks, T.; Fischler, W.; Shenker, SH; Susskind, L., M theory as a matrix model: A conjecture, Phys. Rev. D, 55, 5112, 1997 · doi:10.1103/PhysRevD.55.5112
[27] Bilal, A., M(atrix) theory: A Pedagogical introduction, Fortsch. Phys., 47, 5, 1999 · doi:10.1002/(SICI)1521-3978(199901)47:1/3<5::AID-PROP5>3.0.CO;2-B
[28] Bigatti, D.; Susskind, L., Review of matrix theory, NATO Sci. Ser. C, 520, 277, 1999 · Zbl 0932.81027
[29] Taylor, W., M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory, Rev. Mod. Phys., 73, 419, 2001 · Zbl 1205.81015 · doi:10.1103/RevModPhys.73.419
[30] R. Gopakumar and C. Vafa, M theory and topological strings. I, hep-th/9809187 [INSPIRE].
[31] R. Gopakumar and C. Vafa, M theory and topological strings. II, hep-th/9812127 [INSPIRE]. · Zbl 0922.32015
[32] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys., 3, 1415, 1999 · Zbl 0972.81135 · doi:10.4310/ATMP.1999.v3.n5.a5
[33] Hattab, J.; Palti, E., On the particle picture of Emergence, JHEP, 03, 065, 2024 · Zbl 07862064 · doi:10.1007/JHEP03(2024)065
[34] Douglas, MR; Kabat, DN; Pouliot, P.; Shenker, SH, D-branes and short distances in string theory, Nucl. Phys. B, 485, 85, 1997 · Zbl 0925.81232 · doi:10.1016/S0550-3213(96)00619-0
[35] Calderón-Infante, J.; Delgado, M.; Uranga, AM, Emergence of species scale black hole horizons, JHEP, 01, 003, 2024 · Zbl 1537.83156 · doi:10.1007/JHEP01(2024)003
[36] Green, MB; Gutperle, M.; Vanhove, P.; Gatto, R., One loop in eleven dimensions, Phys. Lett. B, 409, 177, 1997 · doi:10.1016/S0370-2693(97)00931-3
[37] Russo, JG; Tseytlin, AA, One loop four graviton amplitude in eleven-dimensional supergravity, Nucl. Phys. B, 508, 245, 1997 · Zbl 0925.83112 · doi:10.1016/S0550-3213(97)80012-0
[38] Green, MB; Vanhove, P., D instantons, strings and M theory, Phys. Lett. B, 408, 122, 1997 · doi:10.1016/S0370-2693(97)00785-5
[39] Kiritsis, E.; Pioline, B., On R^4threshold corrections in IIb string theory and (p, q) string instantons, Nucl. Phys. B, 508, 509, 1997 · Zbl 0925.81283 · doi:10.1016/S0550-3213(97)00645-7
[40] Pioline, B.; Kiritsis, E., U duality and D-brane combinatorics, Phys. Lett. B, 418, 61, 1998 · Zbl 0945.81054 · doi:10.1016/S0370-2693(97)01398-1
[41] Obers, NA; Pioline, B., U duality and M theory, Phys. Rept., 318, 113, 1999 · doi:10.1016/S0370-1573(99)00004-6
[42] Obers, NA; Pioline, B., Eisenstein series and string thresholds, Commun. Math. Phys., 209, 275, 2000 · Zbl 1043.81059 · doi:10.1007/s002200050022
[43] Berman, DS; Blair, CDA, The Geometry, Branes and Applications of Exceptional Field Theory, Int. J. Mod. Phys. A, 35, 2030014, 2020 · doi:10.1142/S0217751X20300148
[44] Bossard, G.; Kleinschmidt, A., Loops in exceptional field theory, JHEP, 01, 164, 2016 · Zbl 1388.81402 · doi:10.1007/JHEP01(2016)164
[45] Bossard, G.; Pioline, B., Exact ∇^4R^4couplings and helicity supertraces, JHEP, 01, 050, 2017 · Zbl 1373.83099 · doi:10.1007/JHEP01(2017)050
[46] Angelantonj, C.; Florakis, I.; Pioline, B., A new look at one-loop integrals in string theory, Commun. Num. Theor. Phys., 6, 159, 2012 · Zbl 1270.81147 · doi:10.4310/CNTP.2012.v6.n1.a4
[47] Bachas, C.; Kiritsis, E., F^4terms in N = 4 string vacua, Nucl. Phys. B Proc. Suppl., 55, 194, 1997 · Zbl 0957.81623 · doi:10.1016/S0920-5632(97)00079-0
[48] Bachas, C., Heterotic/type I duality and D-brane instantons, Nucl. Phys. B, 509, 33, 1998 · Zbl 0933.81030 · doi:10.1016/S0550-3213(97)00639-1
[49] de Wit, B.; Lüst, D., BPS amplitudes, helicity supertraces and membranes in M theory, Phys. Lett. B, 477, 299, 2000 · Zbl 1050.81670 · doi:10.1016/S0370-2693(00)00137-4
[50] Green, MB; Russo, JG; Vanhove, P., String theory dualities and supergravity divergences, JHEP, 06, 075, 2010 · Zbl 1288.81107 · doi:10.1007/JHEP06(2010)075
[51] A. Terras, Harmonic analysis on symmetric spaces and applications I, Springer Verlag (1985) [doi:10.1007/978-1-4612-5128-6]. · Zbl 0574.10029
[52] Pioline, B., R^4couplings and automorphic unipotent representations, JHEP, 03, 116, 2010 · Zbl 1271.81146 · doi:10.1007/JHEP03(2010)116
[53] L.J. Mordell, Diophantine Equations, Academic Press, London & New York (1969) [ISBN: 9780125062503]. · Zbl 0188.34503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.