×

Bounds on field range for slowly varying positive potentials. (English) Zbl 07837549

Summary: In the context of quantum gravitational systems, we place bounds on regions in field space with slowly varying positive potentials. Using the fact that \(V < \Lambda_s^2\), where \(\Lambda_s(\phi)\) is the species scale, and the emergent string conjecture, we show this places a bound on the maximum diameter of such regions in field space: \(\Delta\phi \leq a\log(1/V) + b\) in Planck units, where \(a \leq \sqrt{(d - 1)(d - 2)}\), and \(b\) is an \(\mathcal{O}(1)\) number and expected to be negative. The coefficient of the logarithmic term has previously been derived using TCC, providing further confirmation. For type II string flux compactifications on Calabi-Yau threefolds, using the recent results on the moduli dependence of the species scale, we can check the above relation and determine the constant \(b\), which we verify is \(\mathcal{O}(1)\) and negative in all the examples we studied.

MSC:

81-XX Quantum theory

References:

[1] Dvali, G., Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys., 58, 528, (2010) · Zbl 1196.81258 · doi:10.1002/prop.201000009
[2] Dvali, G.; Lüst, D., Evaporation of Microscopic Black Holes in String Theory and the Bound on Species, Fortsch. Phys., 58, 505, (2010) · Zbl 1208.81158 · doi:10.1002/prop.201000008
[3] G. Dvali and C. Gomez, Species and Strings, arXiv:1004.3744 [INSPIRE].
[4] Dvali, G.; Gomez, C.; Lüst, D., Black Hole Quantum Mechanics in the Presence of Species, Fortsch. Phys., 61, 768, (2013) · Zbl 1338.83072 · doi:10.1002/prop.201300002
[5] D. van de Heisteeg, C. Vafa, M. Wiesner and D.H. Wu, Moduli-dependent Species Scale, arXiv:2212.06841 [INSPIRE].
[6] van de Heisteeg, D.; Vafa, C.; Wiesner, M., Bounds on Species Scale and the Distance Conjecture, Fortsch. Phys., 71, 2300143, (2023) · Zbl 1543.83161 · doi:10.1002/prop.202300143
[7] Bedroya, A.; Vafa, C., Trans-Planckian Censorship and the Swampland, JHEP, 09, 123, (2020) · Zbl 1454.85006 · doi:10.1007/JHEP09(2020)123
[8] Lee, S-J; Lerche, W.; Weigand, T., Emergent strings from infinite distance limits, JHEP, 02, 190, (2022) · Zbl 1543.81173 · doi:10.1007/JHEP02(2022)190
[9] Scalisi, M.; Valenzuela, I., Swampland distance conjecture, inflation and α-attractors, JHEP, 08, 160, (2019) · doi:10.1007/JHEP08(2019)160
[10] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21, (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[11] N.B. Agmon, A. Bedroya, M.J. Kang and C. Vafa, Lectures on the string landscape and the Swampland, arXiv:2212.06187 [INSPIRE].
[12] Etheredge, M., Sharpening the Distance Conjecture in diverse dimensions, JHEP, 12, 114, (2022) · Zbl 1536.83014 · doi:10.1007/JHEP12(2022)114
[13] Palti, E., The Weak Gravity Conjecture and Scalar Fields, JHEP, 08, 034, (2017) · Zbl 1381.83074 · doi:10.1007/JHEP08(2017)034
[14] Rudelius, T., Revisiting the refined Distance Conjecture, JHEP, 09, 130, (2023) · Zbl 07754709 · doi:10.1007/JHEP09(2023)130
[15] Andriot, D.; Cribiori, N.; Erkinger, D., The web of swampland conjectures and the TCC bound, JHEP, 07, 162, (2020) · Zbl 1451.83105 · doi:10.1007/JHEP07(2020)162
[16] Andriot, D.; Horer, L., (Quasi-) de Sitter solutions across dimensions and the TCC bound, JHEP, 01, 020, (2023) · Zbl 1540.83130 · doi:10.1007/JHEP01(2023)020
[17] Rudelius, T., Asymptotic scalar field cosmology in string theory, JHEP, 10, 018, (2022) · Zbl 1534.83120 · doi:10.1007/JHEP10(2022)018
[18] G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D15 (1977) 2738 [INSPIRE].
[19] Hebecker, A.; Wrase, T., The Asymptotic dS Swampland Conjecture — a Simplified Derivation and a Potential Loophole, Fortsch. Phys., 67, 1800097, (2019) · Zbl 1535.83016 · doi:10.1002/prop.201800097
[20] A. Bedroya, de Sitter Complementarity, TCC, and the Swampland, arXiv:2010.09760.
[21] Cecotti, S.; Vafa, C., Ising model and N = 2 supersymmetric theories, Commun. Math. Phys., 157, 139, (1993) · Zbl 0787.58008 · doi:10.1007/BF02098023
[22] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nucl. Phys. B, 405, 279, (1993) · Zbl 0908.58074 · doi:10.1016/0550-3213(93)90548-4
[23] Cribiori, N.; Lüst, D.; Staudt, G., Black hole entropy and moduli-dependent species scale, Phys. Lett. B, 844, (2023) · Zbl 1531.83156 · doi:10.1016/j.physletb.2023.138113
[24] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 311, (1994) · Zbl 0815.53082 · doi:10.1007/BF02099774
[25] Antoniadis, I.; Gava, E.; Narain, KS; Taylor, TR, Topological amplitudes in string theory, Nucl. Phys. B, 413, 162, (1994) · Zbl 1007.81522 · doi:10.1016/0550-3213(94)90617-3
[26] Vafa, C., Superstrings and topological strings at large N, J. Math. Phys., 42, 2798, (2001) · Zbl 1060.81594 · doi:10.1063/1.1376161
[27] Ooguri, H.; Vafa, C., The C deformation of Gluino and nonplanar diagrams, Adv. Theor. Math. Phys., 7, 53, (2003) · doi:10.4310/ATMP.2003.v7.n1.a3
[28] Ooguri, H.; Vafa, C., Gravity induced C deformation, Adv. Theor. Math. Phys., 7, 405, (2003) · Zbl 1053.81078 · doi:10.4310/ATMP.2003.v7.n3.a2
[29] R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
[30] Blumenhagen, R.; Kläwer, D.; Schlechter, L.; Wolf, F., The Refined Swampland Distance Conjecture in Calabi-Yau Moduli Spaces, JHEP, 06, 052, (2018) · Zbl 1395.81251 · doi:10.1007/JHEP06(2018)052
[31] Kläwer, D., Modular curves and the refined distance conjecture, JHEP, 12, 088, (2021) · Zbl 1521.83185 · doi:10.1007/JHEP12(2021)088
[32] D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett.78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
[33] Bedroya, A.; Brandenberger, R.; Loverde, M.; Vafa, C., Trans-Planckian Censorship and Inflationary Cosmology, Phys. Rev. D, 101, (2020) · doi:10.1103/PhysRevD.101.103502
[34] Montero, M.; Vafa, C.; Valenzuela, I., The dark dimension and the Swampland, JHEP, 02, 022, (2023) · doi:10.1007/JHEP02(2023)022
[35] Anchordoqui, LA; Antoniadis, I.; Lüst, D., Aspects of the dark dimension in cosmology, Phys. Rev. D, 107, (2023) · doi:10.1103/PhysRevD.107.083530
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.