×

Lower discrete Hausdorff dimension of spectra for Moran measure. (English) Zbl 07916685

Summary: We show that the lower discrete Hausdorff dimension of any spectrum for Moran measure is bounded by the Hausdorff dimension of its support.
{© 2024 IOP Publishing Ltd & London Mathematical Society. All rights, including for text and data mining, AI training, and similar technologies, are reserved.}

MSC:

28A80 Fractals
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
Full Text: DOI

References:

[1] An, L-X; He, X-G, A class of spectral Moran measures, J. Funct. Anal., 266, 343-54, 2014 · Zbl 1303.28009 · doi:10.1016/j.jfa.2013.08.031
[2] An, L-X; Lai, C-K, Arbitrarily sparse spectra for self-affine spectral measures, Anal. Math., 49, 19-42, 2023 · Zbl 1538.28018 · doi:10.1007/s10476-023-0191-9
[3] Barlow, M. T.; Taylor, S. J., Defining fractal subsets of \(\mathbb{Z}^d\), Proc. Lond. Math. Soc., 64, 125-52, 1992 · Zbl 0753.28006 · doi:10.1112/plms/s3-64.1.125
[4] Bishop, C.; Peres, Y., Fractal Sets in Probability and Analysis (Cambridge Studies in Advanced Mathematics vol 162), 2017, Cambridge University Press · Zbl 1390.28012
[5] Czaja, W.; Kutyniok, G.; Speegle, D., Beurling dimension of Gabor pseudoframes for affine subspaces, J. Fourier Anal. Appl., 14, 514-37, 2008 · Zbl 1268.42055 · doi:10.1007/s00041-008-9026-0
[6] Dai, X-R, When does a Bernoulli convolution admit a spectrum?, Adv. Math., 231, 1681-93, 2012 · Zbl 1266.42012 · doi:10.1016/j.aim.2012.06.026
[7] Dai, X-R; He, X-G; Lai, C-K, Spectral property of Cantor measures with consecutive digits, Adv. Math., 242, 187-208, 2013 · Zbl 1277.28009 · doi:10.1016/j.aim.2013.04.016
[8] Dai, X-R; Sun, Q. Y., Spectral measures with arbitrary Hausdorff dimensions, J. Funct. Anal., 268, 2464-77, 2015 · Zbl 1323.28010 · doi:10.1016/j.jfa.2015.01.005
[9] Daw, L., A uniform result for the dimension of fractional Brownian motion level sets, Stat. Probab. Lett., 169, 2021 · Zbl 1455.60061 · doi:10.1016/j.spl.2020.108984
[10] Daw, L.; Kerchev, G., Fractal dimensions of the Rosenblatt process, Stoch. Process. Appl., 161, 544-71, 2023 · Zbl 1532.60073 · doi:10.1016/j.spa.2023.04.001
[11] Daw, L.; Seuret, S., Potential method and projection theorems for macroscopic Hausdorff dimension, Adv. Math., 417, 2023 · Zbl 07662132 · doi:10.1016/j.aim.2023.108920
[12] Deng, Q-R; Chen, J-B, Uniformity of spectral self-affine measures, Adv. Math., 380, 2021 · Zbl 1457.42038 · doi:10.1016/j.aim.2021.107568
[13] Dutkay, D. E.; Han, D. G.; Sun, Q. Y.; Weber, E., On the Beurling dimension of exponential frames, Adv. Math., 226, 285-97, 2011 · Zbl 1209.28010 · doi:10.1016/j.aim.2010.06.017
[14] Dutkay, D. E.; Han, D. G.; Sun, Q. Y., Divergence of the mock and scrambled Fourier series on fractal measures, Trans. Am. Math. Soc., 369, 2191-208, 2014 · Zbl 1406.42008 · doi:10.1090/S0002-9947-2013-06021-7
[15] Feng, D. J.; Wen, Z. Y.; Wu, J., Some dimensional results for homogeneous Moran sets, Sci. China A, 40, 475-82, 1997 · Zbl 0881.28003 · doi:10.1007/BF02896955
[16] Fu, Y-S; He, X-G; Wen, Z-X, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl., 116, 105-31, 2018 · Zbl 1400.42005 · doi:10.1016/j.matpur.2018.06.002
[17] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16, 101-21, 1974 · Zbl 0279.47014 · doi:10.1016/0022-1236(74)90072-X
[18] He, X-G; Kang, Q-C; Tang, M-W; Wu, Z-Y, Beurling dimension and self-similar measures, J. Funct. Anal., 274, 2245-64, 2018 · Zbl 1384.28015 · doi:10.1016/j.jfa.2017.08.011
[19] He, X-G; Lai, C-K; Lau, K-S, Exponential spectra in \(L^2(\mu)\), Appl. Comput. Harmon. Anal., 34, 327-38, 2013 · Zbl 1264.42010 · doi:10.1016/j.acha.2012.05.003
[20] Hu, T-Y; Lau, K-S, Spectral property of the Bernoulli convolation, Adv. Math., 219, 554-67, 2008 · Zbl 1268.42044 · doi:10.1016/j.aim.2008.05.004
[21] Jorgensen, P.; Pedersen, S., Dense analytic subspacesin L^2 spaces, J. Anal. Math., 75, 185-228, 1998 · Zbl 0959.28008 · doi:10.1007/BF02788699
[22] Khoshnevisan, D.; Kim, K.; Xiao, Y., Intermittency and multifractality: a case study via parabolic stochastic PDEs, Ann. Probab., 45, 3697-751, 2017 · Zbl 1418.60081 · doi:10.1214/16-AOP1147
[23] Khoshnevisan, D.; Xiao, Y., On the macroscopic fractal geometry of some random sets, Stochastic Analysis and Related Topics, pp 179-206, 2017, Springer · Zbl 1409.60075
[24] Kolountzakis, M. N.; Matolcsi, M., Tiles with no spectra, Forum Math., 18, 519-28, 2006 · Zbl 1130.42039 · doi:10.1515/FORUM.2006.026
[25] Kolountzakis, M. N.; Matolcsi, M., Complex Hadamard matrices and the spectral set conjecture, Collect. Math., 57, 281-91, 2006 · Zbl 1134.42313
[26] Łaba, I.; Wang, Y., On spectral Cantor measures, J. Funct. Anal., 193, 409-20, 2002 · Zbl 1016.28009 · doi:10.1006/jfan.2001.3941
[27] Lai, C-K, On Fourier frame of absolutely continuous measures, J. Funct. Anal., 261, 2877-89, 2011 · Zbl 1228.42033 · doi:10.1016/j.jfa.2011.07.014
[28] Li, J. J.; Wu, Z. Y., On the quasi-Beurling dimensions of the spectra for planar Moran-type Sierpinski spectral measures, Appl. Comput. Harmon. Anal., 62, 475-97, 2023 · Zbl 1527.28007 · doi:10.1016/j.acha.2022.11.002
[29] Li, J. J.; Wu, Z. Y., On the intermediate value property of spectra for a class of Moran spectral measures, Appl. Comput. Harmon. Anal., 68, 2024 · Zbl 07796954 · doi:10.1016/j.acha.2023.101606
[30] Li, J. J.; Wu, Z. Y., Beurling dimension of a class of spectra of the Sierpinski-type spectral measures, Ann. Funct. Anal., 14, 25, 2023 · Zbl 1528.28024 · doi:10.1007/s43034-022-00251-z
[31] Li, J. J.; Wu, Z. Y., On spectral structure and spectral eigenvalue problems for a class of self-similar spectral measures with product form, Nonlinearity, 35, 3095-117, 2022 · Zbl 1504.28011 · doi:10.1088/1361-6544/ac6b0c
[32] Matolcsi, M., Fugledes conjecture fails in dimension 4, Proc. Am. Math. Soc., 133, 3021-6, 2005 · Zbl 1087.42019 · doi:10.1090/S0002-9939-05-07874-3
[33] Shi, R. X., On dimensions of frame spectral measures and their frame spectra, Ann. Fenn. Math., 46, 483-93, 2021 · Zbl 1477.28004 · doi:10.5186/aasfm.2021.4629
[34] Strichartz, R., Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 81, 209-38, 2000 · Zbl 0976.42020 · doi:10.1007/BF02788990
[35] Strichartz, R., Convergnce of mock Fourier series, J. Anal. Math., 99, 333-253, 2006 · Zbl 1134.42308 · doi:10.1007/BF02789451
[36] Tang, M-W; Wu, Z-Y, Beurling dimension and self-affine measures, Fractals, 29, 2021 · Zbl 1492.28011 · doi:10.1142/S0218348X21501747
[37] Tao, T., Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett., 11, 251-8, 2004 · Zbl 1092.42014 · doi:10.4310/MRL.2004.v11.n2.a8
[38] Wang, C.; Zhang, M-M, Beurling dimension and a class of Moran measures, Chaos Solitons Fractals, 166, 2023 · doi:10.1016/j.chaos.2022.112926
[39] Xiao, Y.; Zheng, X., Discrete fractal dimensions of the ranges of random walks in \(\mathbb{Z}^d\) associate with random conductances, Probab. Theory Relat. Fields, 156, 1-26, 2013 · Zbl 1294.60121 · doi:10.1007/s00440-012-0418-3
[40] Zhang, ZXiao, Y Q2020Self-affine measures and Beurling dimensionPreprint(available at: www.researchgate.net/publication/341958495)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.