×

On the intermediate value property of spectra for a class of Moran spectral measures. (English) Zbl 07796954

Summary: We prove that the Beurling dimensions of the spectra for a class of Moran spectral measures are in 0 and their upper entropy dimensions. Moreover, for such a Moran spectral measure \(\mu\), we show that the Beurling dimension for the spectra of \(\mu\) has the intermediate value property: let \(t\) be any value in 0 and the upper entropy dimension of \(\mu\), then there exists a spectrum whose Beurling dimension is \(t\). In particular, this result settles affirmatively a conjecture involving spectral Bernoulli convolution in Fu et al. (2018) [20]. Furthermore, we prove that the set of the spectra whose Beurling dimensions are equal to any fixed value in 0 and \(\overline{\dim}_{\mathrm{e}} \mu\) has the cardinality of the continuum.

MSC:

28A80 Fractals
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis

References:

[1] An, L. X.; He, X. G., A class of spectral Moran measures. J. Funct. Anal., 343-354 (2014) · Zbl 1303.28009
[2] An, L. X.; Lai, C. K., Arbitrarily sparse spectra for self-affine spectral measures. Anal. Math., 19-42 (2023) · Zbl 1538.28018
[3] Barbaroux, J. M.; Germinet, F.; Tcheremchantsev, S., Generalized fractal dimensions: equivalences and basic properties. J. Math. Pures Appl., 977-1012 (2001) · Zbl 1050.28006
[4] Czaja, W.; Kutyniok, G.; Speegle, D., Beurling dimension of Gabor pseudoframes for affine subspaces. J. Fourier Anal. Appl., 514-537 (2008) · Zbl 1268.42055
[5] Dai, X. R., When does a Bernoulli convolution admit a spectrum?. Adv. Math., 1681-1693 (2012) · Zbl 1266.42012
[6] Dai, X. R., Spectra of Cantor measures. Math. Ann., 1621-1647 (2016) · Zbl 1352.42009
[7] Dai, X. R.; He, X. G.; Lai, C. K., Spectral property of Cantor measures with consecutive digits. Adv. Math., 187-208 (2013) · Zbl 1277.28009
[8] Dai, X. R.; Sun, Q. Y., Spectral measures with arbitrary Hausdorff dimensions. J. Funct. Anal., 2464-2477 (2015) · Zbl 1323.28010
[9] Deng, Q. R., On the spectra of Sierpinski-type self-affine measures. J. Funct. Anal., 4426-4442 (2016) · Zbl 1337.42028
[10] Deng, Q. R.; Chen, J. B., Uniformity of spectral self-affine measures. Adv. Math. (2021) · Zbl 1457.42038
[11] Dutkay, D. E.; Han, D. G.; Sun, Q. Y.; Weber, E., On the Beurling dimension of exponential frames. Adv. Math., 285-297 (2011) · Zbl 1209.28010
[12] Dutkay, D. E.; Han, D. G.; Sun, Q. Y., On the spectra of a Cantor measure. Adv. Math., 251-276 (2009) · Zbl 1173.28003
[13] Dutkay, D. E.; Haussermann, J.; Lai, C. K., Hadamard triples generate self-affine spectral measures. Trans. Am. Math. Soc., 1439-1481 (2019) · Zbl 1440.42030
[14] Edgar, G. A., Integral, Probability, and Fractal Measures (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0893.28001
[15] Falconer, K. J., Fractal Geometry-Mathematical Foundations and Applications (1990), John Wiley and Sons Ltd: John Wiley and Sons Ltd Chichester · Zbl 0689.28003
[16] Falconer, K. J., Techniques in Fractal Geometry (1997), John Wiley and Sons Ltd: John Wiley and Sons Ltd Chichester · Zbl 0869.28003
[17] Fan, A. H.; Lau, K. S.; Rao, H., Relationships between different dimensions of a measure. Monatshefte Math., 191-201 (2002) · Zbl 0996.28001
[18] Feng, D. J.; Wen, Z. Y.; Wu, J., Some dimensional results for homogeneous Moran sets. Sci. China Ser. A, 475-482 (1997) · Zbl 0881.28003
[19] Fu, Y. S., A characterization on the spectra of self-affine measures. J. Fourier Anal. Appl., 732-750 (2019) · Zbl 1415.42003
[20] Fu, Y. S.; He, X. G.; Wen, Z. X., Spectra of Bernoulli convolutions and random convolutions. J. Math. Pures Appl., 105-131 (2018) · Zbl 1400.42005
[21] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal., 101-121 (1974) · Zbl 0279.47014
[22] He, X. G., Beurling dimension and self-similar measures. J. Funct. Anal., 2245-2264 (2018) · Zbl 1384.28015
[23] He, X. G.; Lai, C. K.; Lau, K. S., Exponential spectra in \(L^2(\mu)\). Appl. Comput. Harmon. Anal., 327-338 (2013) · Zbl 1264.42010
[24] He, X. G.; Tang, M. W.; Wu, Z. Y., Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures. J. Funct. Anal., 3688-3722 (2019) · Zbl 1440.42027
[25] Hu, T. Y.; Lau, K. S., Spectral property of the Bernoulli convolutions. Adv. Math., 554-567 (2008) · Zbl 1268.42044
[26] Iosevich, A., Fourier frames for surface-carried measures. Int. Math. Res. Not., 1644-1665 (2020) · Zbl 1494.42034
[27] Jorgensen, P.; Pedersen, S., Dense analytic subspaces in \(L^2\) spaces. J. Anal. Math., 185-228 (1998) · Zbl 0959.28008
[28] Łaba, I.; Wang, Y., On spectral Cantor measures. J. Funct. Anal., 409-420 (2002) · Zbl 1016.28009
[29] Lai, C. K., On Fourier frame of absolutely continuous measures. J. Funct. Anal., 10, 2877-2889 (2011) · Zbl 1228.42033
[30] Lai, C. K., Perfect fractal sets with zero Fourier dimension and arbitrarily long arithmetic progressions. Ann. Acad. Sci. Fenn., Math., 1009-1017 (2017) · Zbl 1403.28006
[31] Landau, H., Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math., 37-52 (1967) · Zbl 0154.15301
[32] Lev, N., Fourier frames for singular measures and pure type phenomena. Proc. Am. Math. Soc., 2833-2896 (2018) · Zbl 1386.42023
[33] Li, J. J.; Wu, M., Pointwise dimensions of general Moran measures with open set condition. Sci. China Math., 699-710 (2011) · Zbl 1219.28010
[34] Li, J. J.; Wu, Z. Y., On spectral structure and spectral eigenvalue problems for a class of self similar spectral measure with product form. Nonlinearity, 3095-3117 (2022) · Zbl 1504.28011
[35] Li, J. L., Spectra of a class of self-affine measures. J. Funct. Anal., 1086-1095 (2011) · Zbl 1222.28015
[36] Li, J. L., Sufficient conditions for the spectrality of self-affine measures with prime determinant. Stud. Math., 73-86 (2014) · Zbl 1364.28009
[37] Li, W. X.; Miao, J. J.; Wang, Z. Q., Weak convergence and spectrality of infinite convolutions. Adv. Math. (2022) · Zbl 1495.28010
[38] Lu, Z. Y.; Dong, X. H.; Liu, Z. S., Spectrality of Sierpinski-type self-affine measures. J. Funct. Anal. (2022) · Zbl 1485.28016
[39] Lyons, R., Seventy years of Rajchman measures, 363-377 · Zbl 0886.43001
[40] Shi, R. X., On dimensions of frame spectral measures and their frame spectra. Ann. Fenn. Math., 483-493 (2021) · Zbl 1477.28004
[41] Strichartz, R., Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math., 209-238 (2000) · Zbl 0976.42020
[42] Strichartz, R., Self-similar measures and their Fourier transforms. I. Indiana Univ. Math. J., 3, 797-817 (1990) · Zbl 0695.28003
[43] Strichartz, R., Fourier asymptotics of fractal measures. J. Funct. Anal., 1, 154-187 (1990) · Zbl 0693.28005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.