×

Multiplicity and symmetry breaking for supercritical elliptic problems in exterior domains. (English) Zbl 07916676

Summary: We deal with the following semilinear equation in exterior domains \[ -\Delta u+u=a(x)|u|^{p-2}u,\quad u\in H_0^1(A_R), \] where \(A_R:=\{x\in\mathbb{R}^N:|x|>R\}\), \(N\geqslant 3\), \(R>0\). Assuming that the weight \(a\) is positive and satisfies some symmetry and monotonicity properties, we exhibit a positive solution having the same features as \(a\), for values of \(p>2\) in a suitable range that includes exponents greater than the standard Sobolev critical one. In the special case of radial weight \(a\), our existence result ensures multiplicity of nonradial solutions. We also provide an existence result for supercritical \(p\) in nonradial exterior domains.
{© 2024 IOP Publishing Ltd & London Mathematical Society. All rights, including for text and data mining, AI training, and similar technologies, are reserved.}

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J15 Second-order elliptic equations
35B06 Symmetries, invariants, etc. in context of PDEs
35B09 Positive solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Bonheure, D.; Noris, B.; Weth, T., Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 573-88, 2012 · Zbl 1248.35079 · doi:10.1016/j.anihpc.2012.02.002
[2] Boscaggin, A.; Colasuonno, F.; Noris, B., Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions, ESAIM Control Optim. Calc. Var., 24, 1625-44, 2018 · Zbl 1419.35072 · doi:10.1051/cocv/2017074
[3] Boscaggin, A.; Colasuonno, F.; Noris, B., A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth, Proc. R. Soc. Edinburgh A, 150, 73-102, 2020 · Zbl 1436.35204 · doi:10.1017/prm.2018.143
[4] Boscaggin, A.; Colasuonno, F.; Noris, B.; Weth, T., A supercritical elliptic equation in the annulus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 40, 157-83, 2023 · Zbl 1512.35163 · doi:10.4171/aihpc/38
[5] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2010, Springer · Zbl 1218.46002
[6] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Commun. Pure Appl. Math., 36, 437-77, 1983 · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[7] Byeon, J., Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differ. Equ., 136, 136-65, 1997 · Zbl 0878.35043 · doi:10.1006/jdeq.1996.3241
[8] Byeon, J.; Kim, S.; Pistoia, A., Existence of clustering high dimensional bump solutions of superlinear elliptic problems on expanding annuli, J. Funct. Anal., 265, 1955-80, 2013 · Zbl 1285.35047 · doi:10.1016/j.jfa.2013.07.008
[9] Catrina, F.; Wang, Z-Q, Nonlinear elliptic equations on expanding symmetric domains, J. Differ. Equ., 156, 153-81, 1999 · Zbl 0944.35026 · doi:10.1006/jdeq.1998.3600
[10] Coffman, C. V., A nonlinear boundary value problem with many positive solutions, J. Differ. Equ., 54, 429-37, 1984 · Zbl 0569.35033 · doi:10.1016/0022-0396(84)90153-0
[11] Colasuonno, F.; Noris, B., A p-Laplacian supercritical Neumann problem, Discrete Contin. Dyn. Syst., 37, 3025-57, 2017 · Zbl 1360.35077 · doi:10.3934/dcds.2017130
[12] Cowan, C.; Moameni, A., A new variational principle, convexity and supercritical Neumann problems, Trans. Am. Math. Soc., 371, 5993-6023, 2019 · Zbl 1421.35147 · doi:10.1090/tran/7250
[13] Cowan, C.; Moameni, A., Supercritical elliptic problems on nonradial domains via a nonsmooth variational approach, J. Differ. Equ., 341, 292-323, 2022 · Zbl 1506.35095 · doi:10.1016/j.jde.2022.09.014
[14] Cowan, C.; Moameni, A., On supercritical elliptic problems: existence, multiplicity of positive and symmetry breaking solutions, Math. Ann., 389, 1-64, 2023 · Zbl 1541.35248 · doi:10.1007/s00208-023-02685-9
[15] Evans, L. C.; Gariepy, R. F., Measure theory and fine properties of functions, Studies in Advanced Mathematics, 1992, CRC Press · Zbl 0804.28001
[16] Gazzola, F.; Grunau, H-C; Sweers, G., Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Polyharmonic Boundary Value Problems (Lecture Notes in Mathematics vol 1991), 2010, Springer · Zbl 1239.35002
[17] Gidas, B.; Ni, W-M; Nirenberg, L., Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68, 209-43, 1979 · Zbl 0425.35020 · doi:10.1007/BF01221125
[18] Gladiali, F.; Grossi, M.; Pacella, F.; Srikanth, P. N., Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. PDE, 40, 295-317, 2011 · Zbl 1209.35043 · doi:10.1007/s00526-010-0341-3
[19] Gladiali, F.; Pacella, F.; Weth, T., Symmetry and nonexistence of low Morse index solutions in unbounded domains, J. Math. Pures Appl., 93, 536-58, 2010 · Zbl 1189.35100 · doi:10.1016/j.matpur.2009.08.003
[20] Grossi, M.; Pacella, F.; Yadava, S. L., Symmetry results for perturbed problems and related questions, Topol. Methods Nonlinear Anal., 21, 211-26, 2003 · Zbl 1274.35021 · doi:10.12775/TMNA.2003.013
[21] Li, Y. Y., Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differ. Equ., 83, 348-67, 1990 · Zbl 0748.35013 · doi:10.1016/0022-0396(90)90062-T
[22] Pacella, F.; Weth, T., Symmetry of solutions to semilinear elliptic equations via Morse index, Proc. Am. Math. Soc., 135, 1753-62, 2007 · Zbl 1190.35096 · doi:10.1090/S0002-9939-07-08652-2
[23] Serra, E.; Tilli, P., Monotonicity constraints and supercritical Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 63-74, 2011 · Zbl 1209.35044 · doi:10.1016/j.anihpc.2010.10.003
[24] Strauss, W. A., Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 149-62, 1977 · Zbl 0356.35028 · doi:10.1007/BF01626517
[25] Szulkin, A., Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3, 77-109, 1986 · Zbl 0612.58011 · doi:10.1016/s0294-1449(16)30389-4
[26] Willem, M., Minimax Theorems (Progress in Nonlinear Differential Equations and Their Applications vol 24), 1996, Birkhäuser Boston, Inc · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.