×

Controllable deformations of unconstrained ideal nematic elastomers. (English) Zbl 07915971

Summary: We establish that, for ideal unconstrained uniaxial nematic elastomers described by a homogeneous isotropic strain-energy density function, the only smooth deformations that can be controlled by the application of surface tractions only and are universal in the sense that they are independent of the strain-energy density are those for which the deformation gradient is constant and the liquid crystal director is either aligned uniformly or oriented randomly in Cartesian coordinates. This result generalizes the classical Ericksen’s theorem for nonlinear homogeneous isotropic hyperelastic materials. While Ericksen’s theorem is directly applicable to liquid crystal elastomers in an isotropic phase where the director is oriented randomly, in a nematic phase, the constitutive strain-energy density must account also for the liquid crystal orientation which leads to significant differences in the analysis compared to the purely elastic counterpart.

MSC:

74B20 Nonlinear elasticity
76A15 Liquid crystals

References:

[1] Carlson, D. E.; Fried, E.; Sellers, S., Force-free states, relative strain, and soft elasticity in nematic elastomers, J. Elast., 69, 161-180, 2002 · Zbl 1171.74308 · doi:10.1023/A:1027377904576
[2] Conti, S.; DeSimone, A.; Dolzmann, G., Soft elastic response of stretched sheets of nematic elastomers: a numerical study, J. Mech. Phys. Solids, 50, 1431-1451, 2002 · Zbl 1030.76006 · doi:10.1016/S0022-5096(01)00120-X
[3] de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals, 1993, Oxford: Clarendon, Oxford · doi:10.1093/oso/9780198520245.001.0001
[4] de Jeu, W. H., Liquid Crystal Elastomers: Materials and Applications, 2012, New York: Springer, New York
[5] DeSimone, A.; Dolzmann, G., Material instabilities in nematic elastomers, Phys. D, Nonlinear Phenom., 136, 1-2, 175-191, 2000 · Zbl 0947.76005 · doi:10.1016/S0167-2789(99)00153-0
[6] DeSimone, A.; Teresi, L., Elastic energies for nematic elastomers, Eur. Phys. J. E, 29, 191-204, 2009 · doi:10.1140/epje/i2009-10467-9
[7] Ericksen, J. L., Deformations possible in every isotropic, incompressible, perfectly elastic body, Z. Angew. Math. Phys., 5, 466-489, 1954 · Zbl 0059.17509 · doi:10.1007/BF01601214
[8] Ericksen, J. L., Deformation possible in every compressible isotropic perfectly elastic materials, J. Math. Phys., 34, 126-128, 1955 · Zbl 0064.42105 · doi:10.1002/sapm1955341126
[9] Finkelmann, H.; Kundler, I.; Terentjev, E. M.; Warner, M., Critical stripe-domain instability of nematic elastomers, J. Phys. II, 7, 1059-1069, 1997 · doi:10.1051/jp2:1997171
[10] Finkelmann, H.; Greve, A.; Warner, M., The elastic anisotropy of nematic elastomers, Eur. Phys. J. E, 5, 281-293, 2001 · doi:10.1007/s101890170060
[11] Fried, E.; Sellers, S., Free-energy density functions for nematic elastomers, J. Mech. Phys. Solids, 52, 7, 1671-1689, 2004 · Zbl 1159.74320 · doi:10.1016/j.jmps.2003.12.005
[12] Fried, E.; Sellers, S., Orientational order and finite strain in nematic elastomers, J. Chem. Phys., 123, 4, 2005 · doi:10.1063/1.1979479
[13] Fried, E.; Sellers, S., Soft elasticity is not necessary for striping in nematic elastomers, J. Appl. Phys., 100, 2006 · doi:10.1063/1.2234824
[14] Golubović, L.; Lubensky, T. C., Nonlinear elasticity of amorphous solids, Phys. Rev. Lett., 63, 1082-1085, 1989 · doi:10.1103/PhysRevLett.63.1082
[15] Goodbrake, C.; Yavari, A.; Goriely, A., The anelastic Ericksen problem: universal deformations and universal eigenstrains in incompressible nonlinear anelasticity, J. Elast., 142, 2, 291-381, 2020 · Zbl 1459.74021 · doi:10.1016/j.jmps.2019.103782
[16] Higaki, H.; Takigawa, T.; Urayama, K., Nonuniform and uniform deformations of stretched nematic elastomers, Macromolecules, 46, 5223-5231, 2013 · doi:10.1021/ma400771z
[17] Klingbeil, W. W.; Shield, R. T., On a class of solutions in plane finite elasticity, Z. Angew. Math. Phys., 17, 489-511, 1966 · doi:10.1007/BF01595984
[18] Kundler, I.; Finkelmann, H., Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromol. Rapid Commun., 16, 679-686, 1995 · doi:10.1002/marc.1995.030160908
[19] Kundler, I.; Finkelmann, H., Director reorientation via stripe-domains in nematic elastomers: influence of cross-link density, anisotropy of the network and smectic clusters, Macromol. Chem. Phys., 199, 677-686, 1998 · doi:10.1002/(SICI)1521-3935(19980401)199:4<677::AID-MACP677>3.0.CO;2-E
[20] Lee, V.; Bhattacharya, K., Universal deformations of incompressible nonlinear elasticity as applied to ideal liquid crystal elastomers, J. Elast., 2023 · Zbl 07920572 · doi:10.1007/s10659-023-10018-9
[21] Marris, A. W.; Shiau, J. F., Universal deformations in isotropic incompressible hyperelastic materials when the deformation tensor has equal proper values, Arch. Ration. Mech. Anal., 36, 135-160, 1970 · Zbl 0194.28504 · doi:10.1007/BF00250814
[22] Mihai, L. A., Stochastic Elasticity: A Nondeterministic Approach to the Nonlinear Field Theory, 2022, Cham, Switzerland: Springer, Cham, Switzerland · Zbl 07555481 · doi:10.1007/978-3-031-06692-4
[23] Mihai, L. A.; Goriely, A., Likely striping in stochastic nematic elastomers, Math. Mech. Solids, 25, 10, 1851-1872, 2020 · Zbl 07259260 · doi:10.1177/1081286520914958
[24] Mihai, L. A.; Goriely, A., Instabilities in liquid crystal elastomers, Mater. Res. Soc. Bull., 46, 784-794, 2021 · doi:10.1557/s43577-021-00115-2
[25] Mihai, L. A.; Mistry, D.; Raistrick, T.; Gleeson, H. F.; Goriely, A., A mathematical model for the auxetic response of liquid crystal elastomers, Philos. Trans. R. Soc. A, 380, 2022 · doi:10.1098/rsta.2021.0326
[26] Petelin, A.; Čopič, M., Observation of a soft mode of elastic instability in liquid crystal elastomers, Phys. Rev. Lett., 103, 2009 · doi:10.1103/PhysRevLett.103.077801
[27] Petelin, A.; Čopič, M., Strain dependence of the nematic fluctuation relaxation in liquid-crystal elastomerss, Phys. Rev. E, 82, 2010 · doi:10.1103/PhysRevE.82.011703
[28] Saccomandi, G.; Hayes, M.; Saccomandi, G., Universal solutions and relations in finite elasticity, Topics in Finite Elasticity, 95-130, 2001, Wien: Springer, Wien · Zbl 1020.74007 · doi:10.1007/978-3-7091-2582-3_3
[29] Shield, R. T., Deformations possible in every compressible, isotropic, perfectly elastic material, J. Elast., 1, 91-92, 1971 · doi:10.1007/BF00045703
[30] Spencer, A. J.M.; Eringen, A. C., Theory of invariants, Continuum Physics 1, 239-253, 1971, New York: Academic Press, New York
[31] Talroze, R. V.; Zubarev, E. R.; Kuptsov, S. A.; Merekalov, A. S.; Yuranova, T. I.; Plate, N. A.; Finkelmann, H., Liquid crystal acrylate-based networks: polymer backbone-LC order interaction, React. Funct. Polym., 41, 1-11, 1999 · doi:10.1016/S1381-5148(99)00032-2
[32] Warner, M.; Terentjev, E. M., Liquid Crystal Elastomers, 2007, Oxford: Oxford University Press, Oxford
[33] Yavari, A.; Goriely, A., The anelastic Ericksen problem: universal eigenstrains and deformations in compressible isotropic elastic solids, Proc. R. Soc. A, 472, 2196, 2016 · Zbl 1371.74048 · doi:10.1098/rspa.2016.0690
[34] Yavari, A.; Goriely, A., Universal deformations in anisotropic nonlinear elastic solids, J. Mech. Phys. Solids, 156, 2021 · doi:10.1016/j.jmps.2021.104598
[35] Yavari, A.; Goriely, A., The universal program of nonlinear hyperelasticity, J. Elast., 2022 · Zbl 1528.74015 · doi:10.1007/s10659-022-09906-3
[36] Zubarev, E. R.; Kuptsov, S. A.; Yuranova, T. I.; Talroze, R. V.; Finkelmann, H., Monodomain liquid crystalline networks: reorientation mechanism from uniform to stripe domains, Liq. Cryst., 26, 1531-1540, 1999 · doi:10.1080/026782999203869
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.