×

The anelastic Ericksen problem: universal deformations and universal eigenstrains in incompressible nonlinear anelasticity. (English) Zbl 1459.74021

Summary: Ericksen’s problem consists of determining all equilibrium deformations that can be sustained solely by the application of boundary tractions for an arbitrary incompressible isotropic hyperelastic material whose stress-free configuration is geometrically flat. We generalize this by first, using a geometric formulation of this problem to show that all the known universal solutions are symmetric with respect to Lie subgroups of the special Euclidean group. Second, we extend this problem to its anelastic version, where the stress-free configuration of the body is a Riemannian manifold. Physically, this situation corresponds to the case where nontrivial finite eigenstrains are present. We characterize explicitly the universal eigenstrains that share the symmetries present in the classical problem, and show that in the presence of eigenstrains, the six known classical families of universal solutions merge into three distinct anelastic families, distinguished by their particular symmetry group. Some generic solutions of these families correspond to well-known cases of anelastic eigenstrains. Additionally, we show that some of these families possess a branch of anomalous solutions, and demonstrate the unique features of these solutions and the equilibrium stress they generate.

MSC:

74B20 Nonlinear elasticity
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
22E70 Applications of Lie groups to the sciences; explicit representations
53Z05 Applications of differential geometry to physics

References:

[1] Antman, S. S., Nonlinear Problems of Elasticity (1995), New York: Springer, New York · Zbl 0820.73002 · doi:10.1007/978-1-4757-4147-6
[2] Ben Amar, M.; Goriely, A., Growth and instability in elastic tissues, J. Mech. Phys. Solids, 53, 2284-2319 (2005) · Zbl 1120.74336 · doi:10.1016/j.jmps.2005.04.008
[3] Bilby, B. A.; Bullough, R.; Smith, E., Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proc. R. Soc. Lond. A, 231, 1185, 263-273 (1955) · doi:10.1098/rspa.1955.0171
[4] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms (1992), Berlin: Springer, Berlin · Zbl 0756.13017 · doi:10.1007/978-1-4757-2181-2
[5] Epstein, M.; Maugin, G. A., Geometric material structure of finite-strain elasticity and anelasticity, Z. Angew. Math. Mech., 76, 125-128 (1996) · Zbl 0925.73055
[6] Epstein, M.; Maugin, G. A., On the geometrical material structure of anelasticity, Acta Mech., 115, 1, 119-131 (1996) · Zbl 0856.73008 · doi:10.1007/BF01187433
[7] Ericksen, J. L., Deformations possible in every isotropic, incompressible, perfectly elastic body, Z. Angew. Math. Phys., 5, 6, 466-489 (1954) · Zbl 0059.17509 · doi:10.1007/BF01601214
[8] Ericksen, J. L., Deformations possible in every compressible, isotropic, perfectly elastic material, Stud. Appl. Math., 34, 1-4, 126-128 (1955) · Zbl 0064.42105
[9] Fosdick, R. L., Remarks on compatibility, Modern Developments in the Mechanics of Continua, 109-127 (1966)
[10] Fosdick, R. L.; Schuler, K. W., On Ericksen’s problem for plane deformations with uniform transverse stretch, Int. J. Eng. Sci., 7, 2, 217-233 (1969) · Zbl 0165.27602 · doi:10.1016/0020-7225(69)90058-5
[11] Gauss, C. F., Disquisitiones generales circa superficies curvas (1828) · JFM 48.0008.01
[12] Golgoon, A.; Yavari, A., Nonlinear elastic inclusions in anisotropic solids, J. Elast., 130, 2, 239-269 (2018) · Zbl 1455.74016 · doi:10.1007/s10659-017-9639-0
[13] Gorbatsevich, V.; Onishchik, A.; Kozlowski, T.; Vinberg, E., Lie Groups and Lie Algebras I: Foundations of Lie Theory Lie Transformation Groups (2013), Berlin: Springer, Berlin
[14] Goriely, A., The Mathematics and Mechanics of Biological Growth (2017), Berlin: Springer, Berlin · Zbl 1398.92003 · doi:10.1007/978-0-387-87710-5
[15] Kafadar, C. B., On Ericksen’s problem, Arch. Ration. Mech. Anal., 47, 1, 15-27 (1972) · Zbl 0244.73006 · doi:10.1007/BF00252185
[16] Klingbeil, W. W.; Shield, R. T., On a class of solutions in plane finite elasticity, Z. Angew. Math. Phys., 17, 4, 489-511 (1966) · doi:10.1007/BF01595984
[17] Knowles, J. K., Universal states of finite anti-plane shear: Ericksen’s problem in miniature, Am. Math. Mon., 86, 2, 109-113 (1979) · Zbl 0401.73057 · doi:10.1080/00029890.1979.11994744
[18] Kondo, K., A proposal of a new theory concerning the yielding of materials based on Riemannian geometry, I, J. Soc. Appl. Mech. Jpn., 2, 11, 123-128 (1949) · doi:10.2322/jjsass1948.2.123
[19] Marris, A., Two new theorems on Ericksen’s problem, Arch. Ration. Mech. Anal., 79, 2, 131-173 (1982) · Zbl 0514.73010 · doi:10.1007/BF00250840
[20] Marsden, J.; Hughes, T., Mathematical Foundations of Elasticity (1983), New York: Dover, New York · Zbl 0545.73031
[21] Martin, S. E.; Carlson, D. E., A note on Ericksen’s problem, J. Elast., 6, 1, 105-108 (1976) · Zbl 0348.73013 · doi:10.1007/BF00135182
[22] Mura, T., Micromechanics of Defects in Solids (2013), Berlin: Springer, Berlin
[23] Naumov, V. E., Mechanics of growing deformable solids: a review, J. Eng. Mech., 120, 2, 207-220 (1994) · doi:10.1061/(ASCE)0733-9399(1994)120:2(207)
[24] Noll, W., Materially uniform simple bodies with inhomogeneities, Arch. Ration. Mech. Anal., 27, 1, 1-32 (1967) · Zbl 0168.45701 · doi:10.1007/BF00276433
[25] Nye, J. F., Some geometrical relations in dislocated crystals, Acta Metall., 1, 2, 153-162 (1953) · doi:10.1016/0001-6160(53)90054-6
[26] Ogden, R. W., Non-Linear Elastic Deformations (1984), New York: Dover, New York · Zbl 0541.73044
[27] Ozakin, A.; Yavari, A., A geometric theory of thermal stresses, J. Math. Phys., 51, 3 (2010) · Zbl 1309.74021 · doi:10.1063/1.3313537
[28] Pence, T. J.; Tsai, H., Swelling-induced microchannel formation in nonlinear elasticity, IMA J. Appl. Math., 70, 1, 173-189 (2005) · Zbl 1073.74016 · doi:10.1093/imamat/hxh049
[29] Pence, T. J.; Tsai, H., Swelling-induced cavitation of elastic spheres, Math. Mech. Solids, 11, 5, 527-551 (2006) · Zbl 1141.74014 · doi:10.1177/1081286504046481
[30] Rodriguez, E. K.; Hoger, A.; McCulloch, A. D., Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27, 455-467 (1994) · doi:10.1016/0021-9290(94)90021-3
[31] Sadik, S.; Yavari, A., On the origins of the idea of the multiplicative decomposition of the deformation gradient, Math. Mech. Solids, 22, 771-772 (2017) · Zbl 1371.74002 · doi:10.1177/1081286515612280
[32] Simo, J. C.; Marsden, J. E., Stress tensors, Riemannian metrics and the alternative descriptions in elasticity, Trends and Applications of Pure Mathematics to Mechanics, 369-383 (1984), Berlin: Springer, Berlin · Zbl 0557.73003 · doi:10.1007/3-540-12916-2_67
[33] Singh, M.; Pipkin, A. C., Note on Ericksen’s problem, Z. Angew. Math. Phys., 16, 5, 706-709 (1965) · doi:10.1007/BF01590971
[34] Stojanović, R.; Djurić, S.; Vujošević, L., On finite thermal deformations, Arch. Mech. Stosow., 16, 103-108 (1964) · Zbl 0134.44301
[35] Takamizawa, K., Stress-free configuration of a thick-walled cylindrical model of the artery – an application of Riemann geometry to the biomechanics of soft tissues, J. Appl. Mech., 58, 840-842 (1991) · doi:10.1115/1.2897272
[36] Yavari, A., A geometric theory of growth mechanics, J. Nonlinear Sci., 20, 6, 781-830 (2010) · Zbl 1428.74157 · doi:10.1007/s00332-010-9073-y
[37] Yavari, A.; Goriely, A., Riemann-Cartan geometry of nonlinear dislocation mechanics, Arch. Ration. Mech. Anal., 205, 1, 59-118 (2012) · Zbl 1281.74006 · doi:10.1007/s00205-012-0500-0
[38] Yavari, A.; Goriely, A., Nonlinear elastic inclusions in isotropic solids, Proc. R. Soc. A, 469, 2160 (2013) · Zbl 1371.74047 · doi:10.1098/rspa.2013.0415
[39] Yavari, A.; Goriely, A., The twist-fit problem: finite torsional and shear eigenstrains in nonlinear elastic solids, Proc. R. Soc. A, 471 (2015) · doi:10.1098/rspa.2015.0596
[40] Yavari, A.; Goriely, A., The anelastic Ericksen problem: universal eigenstrains and deformations in compressible isotropic elastic solids, Proc. R. Soc. A, 472, 2196 (2016) · Zbl 1371.74048 · doi:10.1098/rspa.2016.0690
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.