×

A local \(Tb\) theorem for square functions and parabolic layer potentials. (English) Zbl 07914959

Summary: In this paper, we give a locally parabolic version of \(Tb\) theorem for a class of vector-valued operators with off-diagonal decay in \(L^2\) and certain quasi-orthogonality on a subspace of \(L^2\), in which the testing functions themselves are also vector-valued. As an application, we establish the boundedness of layer potentials related to parabolic operators in divergence form, defined in the upper half-space \(\mathbb{R}_+^{n+2} := \{(x, t, \lambda)\in\mathbb{R}^{n+1}\times(0, \infty)\}\), with uniformly complex elliptic, \(L^\infty\), \(t\), \(\lambda\)-independent coefficients, and satisfying the De Giorgi/Nash estimates.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
35J15 Second-order elliptic equations
35K20 Initial-boundary value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Alfonseca, M.; Auscher, P.; Axelsson, A., Analyticity of layer potentials and L^2 solvability of boundary value problems for divergence form elliptic equations with complex L^∞ coefficients, Adv. Math., 226, 4533-4606, 2011 · Zbl 1217.35056 · doi:10.1016/j.aim.2010.12.014
[2] Auscher, P., Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc., 54, 284-296, 1996 · Zbl 0863.35020 · doi:10.1112/jlms/54.2.284
[3] Auscher, P.; Hofmann, S.; Lacey, M., The solution of the Kato square root problem for second order elliptic operators on ℝ^n, Ann. Math., 156, 633-654, 2002 · Zbl 1128.35316 · doi:10.2307/3597201
[4] Auscher, P.; Egert, M.; Nyström, K., L^2 well-posedness of boundary value problems for parabolic systems with measurable coefficients, J. Eur. Math. Soc., 22, 2943-3058, 2020 · Zbl 1454.35209 · doi:10.4171/jems/980
[5] Auscher, P., Tchamitchian, P.: Square root problem for divergence operators and related topics. Astérisque, Société Mathématique de France, 249 (1998) · Zbl 0909.35001
[6] Castro, A. J.; Nyström, K.; Sande, O., Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients, Calc. Var. Partial Dif., 55, 124, 2016 · Zbl 1361.35068 · doi:10.1007/s00526-016-1058-8
[7] Cho, S.; Dong, H.; Kim, S., On the Green’s matrices of strongly parabolic systems of second order, Indiana Univ. Math. J., 57, 1633-1677, 2008 · Zbl 1170.35005 · doi:10.1512/iumj.2008.57.3293
[8] Christ, M.; Journé, J-L, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159, 51-80, 1987 · Zbl 0645.42017 · doi:10.1007/BF02392554
[9] David, G.; Journé, J-L; Semmes, S., Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoam., 1, 1-56, 1985 · Zbl 0604.42014 · doi:10.4171/rmi/17
[10] Fefferman, C.; Stein, E. M., H^p spaces of several variables, Acta Math., 129, 137-193, 1972 · Zbl 0257.46078 · doi:10.1007/BF02392215
[11] Grau de la Herrán, A.; Hofmann, S., Generalized local Tb theorems for square functions and applications, Mathematika, 63, 1-28, 2017 · Zbl 1366.42022 · doi:10.1112/S0025579315000327
[12] Grau de la Herrán, A.; Hofmann, S.; Lu, G.; Li, X., A local Tb Theorem with Vector-valued Testing Functions, Some Topics in Harmonic Analysis and Applications, 203-229, 2015, Somerville, MA: International Press, Somerville, MA · Zbl 1345.42012
[13] Hofmann, S.; Lacey, M.; McIntosh, A., The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds, Ann. Math., 156, 623-631, 2002 · Zbl 1128.35317 · doi:10.2307/3597200
[14] Hofmann, S.; Kim, S., Gaussian estimates for fundamental solutions to certain parabolic systems, Publ. Mat., 48, 481-496, 2004 · Zbl 1061.35023 · doi:10.5565/PUBLMAT_48204_10
[15] Hofmann, S.; Kim, S., The Green function estimates for strongly elliptic systems of second order, Manuscripta Math., 124, 139-172, 2007 · Zbl 1130.35042 · doi:10.1007/s00229-007-0107-1
[16] Hofmann, S.; Lewis, J. L., L^2 Solvability and representation by caloric layer potentials in time-varying domains, Ann. Math., 144, 349-420, 1996 · Zbl 0867.35037 · doi:10.2307/2118595
[17] Hofmann, S.; Mayboroda, S.; Mourgoglou, M., Layer potentials and boundary value problems for elliptic equations with complex L^∞ coefficients satisfying the small Carleson measure norm condition, Adv. Math., 270, 480-564, 2015 · Zbl 1311.35074 · doi:10.1016/j.aim.2014.11.009
[18] Hofmann, S., McIntosh, A.: The solution of the Kato problem in two dimensions. Proc. Conf. Harmonic Analysis and PDE (El Escorial, Spain, July 2000). Publ. Mat., extra volume, 143-160 (2002) · Zbl 1020.47031
[19] Maz’ya, V. G.; Nazzrov, S. A.; Plamenevskii, B. A., Absence of the De Giorgi-type theorems for strongly elliptic equations with complex coefficients, J. Math. Sov., 28, 726-739, 1985 · Zbl 0562.35030 · doi:10.1007/BF02112337
[20] McIntosh, A.; Meyer, Y., Algèbres dopérateurs définis par des intégrales singulières, C. R. Acad. Sci. Paris, 301, 395-397, 1985 · Zbl 0584.47030
[21] Nyström, K., Square functions estimates and the Kato problem for second order parabolic operators in ℝ^n^+1, Adv. Math., 293, 1-36, 2016 · Zbl 1339.35138 · doi:10.1016/j.aim.2016.02.006
[22] Nyström, K., L^2 solvability of boundary value problems for divergence form parabolic equations with complex coefficients, J. Differ. Equations, 262, 2808-2939, 2017 · Zbl 1386.35149 · doi:10.1016/j.jde.2016.11.011
[23] Semmes, S., Square function estimates and the T(b) theorem, Proc. Amer. Math. Soc., 110, 721-726, 1990 · Zbl 0719.42023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.