×

The Green function estimates for strongly elliptic systems of second order. (English) Zbl 1130.35042

This paper deals with the study of Green’s functions associated to second order strongly elliptic systems of divergence type in a domain \(\Omega\subset\mathbb R^n\), with \(n\geq 3\). The main result establishes that if an elliptic system has the property that all weak solutions of the system are locally Hölder continuous, then it has the Green’s matrix in \(\Omega\). The standard properties of Green’s matrix including pointwise bounds, \(L^p\) and weak \(L^p\) estimates for its derivatives are also studied for such elliptic systems.

MSC:

35J45 Systems of elliptic equations, general (MSC2000)
35A08 Fundamental solutions to PDEs
35B45 A priori estimates in context of PDEs

References:

[1] Alfonseca, A., Auscher, P., Axelsson, A., Hofmann, S., Kim, S.: Analyticity of layer potentials and L 2 Solvability of boundary value problems for divergence form elliptic equations with complex \(L^{\infty}\) coefficients, preprint · Zbl 1217.35056
[2] Auscher P. (1996). Regularity theorems and heat kernel for elliptic operators. J. London Math. Soc. 54(2): 284–296 · Zbl 0863.35020
[3] Auscher, P., Tchamitchian, Ph.: Square root problem for divergence operators and related topics. Astérisque No. 249 (1998) · Zbl 0909.35001
[4] Campanato S. (1965). Equazioni ellittiche del II{\({}^o\)} ordine espazi \({\mathcal{L}}^{(2,\lambda)}\) . (Italian) Ann. Mat. Pura Appl. 69(4): 321–381 · Zbl 0145.36603 · doi:10.1007/BF02414377
[5] De Giorgi E. (1957). Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. (Italian) Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3(3): 25–43 · Zbl 0084.31901
[6] Dolzmann G. and Müller S. (1995). Estimates for Green’s matrices of elliptic systems by L p theory. Manuscripta Math. 88(2): 261–273 · Zbl 0846.35040 · doi:10.1007/BF02567822
[7] Fuchs M. (1986). The Green matrix for strongly elliptic systems of second order with continuous coefficients. Z. Anal. Anwendungen 5(6): 507–531 · Zbl 0634.35023
[8] Giaquinta M. (1983). Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton University Press, Princeton · Zbl 0516.49003
[9] Giaquinta M. (1993). Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag, Basel · Zbl 0786.35001
[10] Gilbarg D. and Trudinger N.S. (2001). Elliptic partial differential equations of second order. Reprint of the 1998 ed. Springer, Berlin · Zbl 1042.35002
[11] Grüter M. and Widman K.-O. (1982). The Green function for uniformly elliptic equations. Manuscripta Math. 37(3): 303–342 · Zbl 0485.35031 · doi:10.1007/BF01166225
[12] Hofmann S. and Kim S. (2004). Gaussian estimates for fundamental solutions to certain parabolic systems. Publ. Mat. 48: 481–496 · Zbl 1061.35023
[13] John F. and Nirenberg L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14: 415–426 · Zbl 0102.04302 · doi:10.1002/cpa.3160140317
[14] Littman W., Stampacchia G. and Weinberger H.F. (1963). Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 17(3): 43–77 · Zbl 0116.30302
[15] Malý J. and Ziemer W.P. (1997). Fine regularity of solutions of elliptic partial differential equations. American Mathematical Society, Providence · Zbl 0882.35001
[16] Meyers N.G. (1963). An L p -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17(3): 189–206 · Zbl 0127.31904
[17] Morrey C.B. Jr. (1966). Multiple integrals in the calculus of variations. Springer, New York · Zbl 0142.38701
[18] Moser J. (1961). On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14: 577–591 · Zbl 0111.09302 · doi:10.1002/cpa.3160140329
[19] Sarason D. (1975). Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207: 391–405 · Zbl 0319.42006 · doi:10.1090/S0002-9947-1975-0377518-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.