×

MRI bias field estimation and tissue segmentation using multiplicative intrinsic component optimization and its extensions. (English) Zbl 07914368

Chen, Ke (ed.) et al., Handbook of mathematical models and algorithms in computer vision and imaging. Mathematical imaging and vision. Springer Reference. Cham: Springer. 1203-1234 (2023).
Summary: In medical image analysis, energy minimization-based optimization approaches are invaluable. This chapter presents a joint optimization method called multiplicative intrinsic component optimization (MICO) for magnetic resonance (MR) images in bias field estimation and segmentation. Due to the intensity inhomogeneity in MR images, there are overlaps between the ranges of the intensities of different tissues, which often causes misclassification of tissues. To overcome this problem, our proposed method MICO can estimate bias field without avoiding intensity inhomogeneity and can benefit to achieve superior tissue segmentation results. We extended MICO formulation by connecting total variation (TV) as a convex regularization. In addition, for the TV-based MICO model, we implemented the alternating direction method of multipliers (ADMM), which can solve the model efficiently and guarantee its convergence. Quantitative evaluations and comparisons with other popular software have shown that MICO and TVMICO outperform them in terms of robustness and accuracy.
For the entire collection see [Zbl 1527.94003].

MSC:

92C55 Biomedical imaging and signal processing
90C90 Applications of mathematical programming

Software:

N4itk
Full Text: DOI

References:

[1] Ahmed, M., Yamany, S., Mohamed, N., Farag, A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193-199 (2002)
[2] Axel, L., Costantini, J., Listerud, J.: Intensity correction in surface-coil MR imaging. Am. J. Radiol. 148(2), 418-420 (1987)
[3] Barrow, H., Tenenbaum, J.: Recovering intrinsic scene characteristics from images. In: Hanson, A., Riseman, E. (eds.) Computer Vision Systems, pp. 3-26. Academic, Orlando (1978)
[4] Bezdek, J.C., Ehrlich, R., Full, W., FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 10(2-3), 191-203 (1984)
[5] Chen, K.: Introduction to Variational Image-Processing Models and Applications (2013) · Zbl 1278.68329
[6] Chen, Y., Ye, X.: Projection onto a simplex, arXiv preprint arXiv:1101.6081 (2011)
[7] Condon, B.R., Patterson, J., Wyper, D.: Image nonuniformity in magnetic resonance imaging: its magnitude and methods for its correction. Br. J. Radiol. 60(1), 83-87 (1987)
[8] Dawant, B., Zijdenbos, A., Margolin, R.: Correction of intensity variations in MR images for computer-aided tissues classification. IEEE Trans. Med. Imaging 12(4), 770-781 (1993)
[9] Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40 (1976) · Zbl 0352.65034
[10] Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 9(R2) 41-76 (1975) · Zbl 0368.65053
[11] Goldstein, T., Osher, S.: The split bregman method for L1 regularized problems, UCLA CAM Report 08-29 (2009)
[12] Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323-343 (2009) · Zbl 1177.65088
[13] Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore/London (1996) · Zbl 0865.65009
[14] Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16(3), 238-251 (1997)
[15] He, Y., Hussaini, M.Y., Ma, J., Shafei, B., Steidl, G.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recogn. 45(9), 3463-3471 (2012) · Zbl 1242.68360
[16] Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985) · Zbl 0576.15001
[17] Johnston, B., Atkins, M.S., Mackiewich, B., Anderson, M.: Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans. Med. Imaging 15(2), 154-169 (1996)
[18] Juntu, J., Sijbers, J., Van Dyck, D., Gielen, J.: Bias field correction for MRI images. In: Computer Recognition Systems, pp. 543-551. Springer, Berlin/Heidelberg (2005)
[19] Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7-23 (2003) · Zbl 1009.68642
[20] Leemput, V., Maes, K., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imag. 18(10), 885-896 (1999)
[21] Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Imag. Proc. 17(10), 1940-1949 (2008) · Zbl 1371.94225
[22] Li, C., Huang, R., Ding, Z., Gatenby, C., Metaxas, D., Gore, J.: A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity. In: Proceedings of Medical Image Computing and Computer Aided Intervention (MICCAI). LNCS, vol. 5242, Part II, pp. 1083-1091 (2008)
[23] Li, C., Xu, C., Anderson, A.W., Gore, J.C.: MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework. In: International Conference on Information Processing in Medical Imaging, pp. 288-299. Springer (2009)
[24] Li, F., Ng, M.K., Li, C.: Variational fuzzy Mumford-Shah model for image segmentation. SIAM J. Appl. Math. 70(7), 2750-2770 (2010) · Zbl 1213.94017
[25] Li, C., Gore, J.C., Davatzikos, C.: Multiplicative intrinsic component optimization (mico) for MRI bias field estimation and tissue segmentation. Mag. Resonan. Imaging 32(7), 913-923 (2014)
[26] Li, F., Osher, S., Qin, J., Yan, M.: A multiphase image segmentation based on fuzzy membership functions and l1-norm fidelity. J. Sci. Comput. 69(1), 82-106 (2016) · Zbl 1353.65015
[27] Likar, B., Viergever, M., Pernus, F.: Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans. Med. Imaging 20(12), 1398-1410 (2001)
[28] Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964-979 (1979) · Zbl 0426.65050
[29] Liu, J., Huang, T.-Z., Selesnick, I.W., Lv, X.-G., Chen, P.-Y.: Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, 232-246 (2015) · Zbl 1360.94042
[30] Liu, Z., Wali, S., Duan, Y., Chang, H., Wu, C., Tai, X.-C.: Proximal ADMM for Euler’s elastica based image decomposition model. Numer. Math. Theory Methods Appl. 12(2), 370-402 · Zbl 1449.94015
[31] McVeigh, E.R., Bronskil, M.J., Henkelman, R.M.: Phase and sensitivity of receiver coils in magnetic resonance imaging. Med. Phys. 13(6), 806-814 (1986)
[32] Narayana, P.A., Brey, W.W., Kulkarni, M.V., Sivenpiper, C.L.: Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magn. Reson. Imaging 6(3), 271-274 (1988)
[33] Pham, D.: Spatial models for fuzzy clustering. Comput. Vis. Image Underst. 84(2), 285-297 (2001) · Zbl 1033.68612
[34] Pham, D., Prince, J.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737-752 (1999)
[35] Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981) · Zbl 0453.41001
[36] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1-4), 259-268 (1992) · Zbl 0780.49028
[37] Salvado, O., Hillenbrand, C., Wilson, D.: Correction of intensity inhomogeneity in MR images of vascular disease. In: EMBS’05, pp. 4302-4305. IEEE, Shanghai (2005)
[38] Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13, 856-876 (2001)
[39] Simmons, A., Tofts, P.S., Barker, G.J., Arrdige, S.R.: Sources of intensity nonuniformity in spin echo images at 1.5t. Magn. Reson. Med. 32(1), 121-128 (1991)
[40] Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87-97 (1998)
[41] Stockman, G., Shapiro, L.G.: Computer Vision. Prentice Hall, Upper Saddle River (2001)
[42] Styner, M., Brechbuhler, C., Szekely, G., Gerig, G.: Parametric estimate of intensity inhomo-geneities applied to MRI. IEEE Trans. Med. Imaging 19(3), 153-165 (2000)
[43] Tappen, M., Freeman, W., Adelson, E.: Recovering intrinsic images from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1459-1472 (2005)
[44] Tincher, M., Meyer, C.R., Gupta, R., Williams, D.M.: Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI. IEEE Trans. Med. Imaging 12(2), 361-365 (1993)
[45] Tu, X., Gao, J., Zhu, C., Cheng, J.-Z., Ma, Z., Dai, X., Xie, M.: MR image segmentation and bias field estimation based on coherent local intensity clustering with total variation regularization, Med. Biol. Eng. Computi. 54(12), 1807-1818 (2016)
[46] Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4itk: improved n3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310-1320 (2010)
[47] Tustison, N., Avants, B., Cook, P., Zheng, Y., Egan, A., Yushkevich, P., Gee, J.: N4itk: improved n3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310-1320 (2010)
[48] Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405-421 (2007)
[49] Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405-421 (2007)
[50] Wali, S., Zhang, H., Chang, H., Wu, C.: A new adaptive boosting total generalized variation (TGV) technique for image denoising and inpainting. J. Vis. Commun. Image Represent. 59, 39-51 (2019a)
[51] Wali, S., Shakoor, A., Basit, A., Xie, L., Huang, C., Li, C.: An efficient method for Euler’s elastica based image deconvolution. IEEE Access 7, 61226-61239 (2019b)
[52] Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248-272 (2008) · Zbl 1187.68665
[53] Weiss, Y.: Deriving intrinsic images from image sequences. In: Proceedings of 8th International Conference on Computer Vision (ICCV), vol. II, pp. 68-75 (2001)
[54] Wells, W., Grimson, E., Kikinis, R., Jolesz, F.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging 15(4), 429-442 (1996)
[55] Wicks, D.A.G., Barker, G.J., Tofts, P.S.: Correction of intensity nonuniformity in MR images of any orientation. Magn. Reson. Imag. 11(2), 183-196 (1993)
[56] Zheng, X., Lei, Q., Yao, R., Gong, Y., Yin, Q.: Image segmentation based on adaptive k-means algorithm. EURASIP J. Image Video Process. 2018(1), 1-10 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.