×

A new fuzzy \(c\)-means method with total variation regularization for segmentation of images with noisy and incomplete data. (English) Zbl 1242.68360

Summary: The objective function of the original (fuzzy) \(c\)-mean method is modified by a regularizing functional in the form of total variation (TV) with regard to gradient sparsity, and a regularization parameter is used to balance clustering and smoothing. An alternating direction method of multipliers in conjunction with the fast discrete cosine transform is used to solve the TV-regularized optimization problem. The new algorithm is tested on both synthetic and real data, and is demonstrated to be effective and robust in treating images with noise and missing data (incomplete data).

MSC:

68U10 Computing methodologies for image processing
68T45 Machine vision and scene understanding
Full Text: DOI

References:

[1] Fu, K.; Mui, J., A survey on image segmentation, Pattern Recognition, 13, 1, 3-16 (1981)
[2] Pal, N. R.; Pal, S. K., A review on image segmentation techniques, Pattern Recognition, 26, 9, 1277-1294 (1993)
[3] Comaniciu, D.; Meer, P., Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 5, 603-619 (2002)
[4] Bezdek, J. C.; Ehrlich, R.; Full, W., Fcm: the fuzzy c-means clustering algorithm, Computers & Geosciences, 10, 2-3, 191-203 (1984)
[5] Cootes, T. F.; Edwards, G. J.; Taylor, C. J., Active appearance models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 6, 681-685 (2001)
[6] Kass, M.; Witkin, A.; Terzopoulos, D., Snakes: active contour models, International Journal of Computer Vision, 1, 321-331 (1988)
[7] Cootes, T. F.; Taylor, C. J.; Cooper, D. H.; Graham, J., Active shape models—their training and application, Computer Vision and Image Understanding, 61, 1, 38-59 (1995)
[8] L. Szilágyi, Z. Benyo, S.M. Szilágyi, MR brain image segmentation using an enhanced fuzzy c-means algorithm, in: Proceedings of the 25th International Conference on IEEE EMBS, September 2003.; L. Szilágyi, Z. Benyo, S.M. Szilágyi, MR brain image segmentation using an enhanced fuzzy c-means algorithm, in: Proceedings of the 25th International Conference on IEEE EMBS, September 2003.
[9] Cai, W.; Chen, S.; Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 40, 3, 825-838 (2007) · Zbl 1118.68133
[10] Liew, A. W.C.; Leuing, S. H.; Lau, W. H., Fuzzy image clustering incorporating spatial continuity, IEE Proceedings. Vision, Image and Signal Processing, 147, 2, 185-192 (2000)
[11] Ahmed, M. N.; Yamany, S. M.; Mohamed, N.; Farag, A. A.; Moriarty, T., A modified fuzzy c-means algorithm for biased field estimation and segmentation of MRI data, IEEE Transactions on Medical Imaging, 21, 3, 193-199 (2002)
[12] R.P. Li, M. Mukaidono, A maximum entropy approach to fuzzy clustering, in: Proceedings of the Fourth IEEE International Conference on Fuzzy Systems, 1995, pp. 2227-2232.; R.P. Li, M. Mukaidono, A maximum entropy approach to fuzzy clustering, in: Proceedings of the Fourth IEEE International Conference on Fuzzy Systems, 1995, pp. 2227-2232.
[13] S. Miyamoto, K. Umayahara, Fuzzy clustering by quadratic regularization, in: Proceedings of the IEEE International Conference on Fuzzy Systems, 1998, pp. 1394-1399.; S. Miyamoto, K. Umayahara, Fuzzy clustering by quadratic regularization, in: Proceedings of the IEEE International Conference on Fuzzy Systems, 1998, pp. 1394-1399.
[14] Pham, D. L., Spatial models for fuzzy clustering, Computer Vision and Image Understanding, 84, 285-297 (2001) · Zbl 1033.68612
[15] Hou, Z.; Qian, W.; Huang, S.; Hu, Q.; Nowinski, W. L., Regularized fuzzy c-means method for brain tissue clustering, Pattern Recognition Letters, 28, 1788-1794 (2007)
[16] Eggers, H.; Knopp, T.; Potts, D., Field inhomogeneity correction based on gridding reconstruction for magnetic resonance imaging, IEEE Transactions on Medical Imaging, 26, 3, 374-384 (2007)
[17] Johnston, B.; Atkins, M. S.; Mackiewich, B.; Anderson, M., Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Transactions on Medical Imaging, 15, 154-169 (1996)
[18] Lim, K. O.; Pfefferbaum, A., Segmentation of MR brain images into cerebrospinal fluid and white and gray matter, Journal of Computer Assisted Tomography, 13, 588-593 (1989)
[19] Brinkmann, B. H.; Manduca, A.; Robb, R. A., Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction, IEEE Transactions on Medical Imaging, 17, 161-171 (1998)
[20] Meyer, C. R.; Peyton, H. B.; Pipe, J., Retrospective correction of intensity inhomogeneities in MRI, IEEE Transactions on Medical Imaging, 14, 36-41 (1995)
[21] Sled, J. G.; Zijdenbos, A. P.; Evans, A. C., A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, 17, 87-97 (1998)
[22] R. Compton, S. Osher, L. Bouchrad, Hybrid Regularization for MRI Reconstruction with Field Inhomogeneity Correction, CAM Report, UCLA, 2011.; R. Compton, S. Osher, L. Bouchrad, Hybrid Regularization for MRI Reconstruction with Field Inhomogeneity Correction, CAM Report, UCLA, 2011.
[23] Pham, D. L.; Prince, J. L., Adaptive fuzzy segmentation of magnetic resonance images, IEEE Transactions on Medical Imaging, 18, 9, 737-752 (1999)
[24] H. Cao, H.-W. Deng, Y. Wang, Segmentation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy c-means clustering algorithm, in: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 2011.; H. Cao, H.-W. Deng, Y. Wang, Segmentation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy c-means clustering algorithm, in: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 2011.
[25] Liew, A. W-C.; Yan, H., An adaptive spatial fuzzy clustering algorithm for 3-d mr image segmentation, IEEE Transactions on Medical Imaging, 22, 1063-1075 (2003)
[26] Potts, R. B., Some generalized order-disorder transformations, Proceedings of the Cambridge Philosophical Society, 48, 106-109 (1952) · Zbl 0048.45601
[27] T. Pock, A. Chambolle, D. Cremers, H. Bischof, A convex relaxation approach for computing minimal partitions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 810-817.; T. Pock, A. Chambolle, D. Cremers, H. Bischof, A convex relaxation approach for computing minimal partitions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 810-817.
[28] J. Lellmann, J. Kappes, J. Yuan, F. Becker, C. Schnörr, Convex Multi-class Image Labeling by Simplex-Constrained Total Variation, Technical Report, IWR, University of Heidelberg, 2008.; J. Lellmann, J. Kappes, J. Yuan, F. Becker, C. Schnörr, Convex Multi-class Image Labeling by Simplex-Constrained Total Variation, Technical Report, IWR, University of Heidelberg, 2008.
[29] C. Zach, D. Gallup, J.-M. Frahm, M. Niethammer, Fast Global Labeling for Real-Time Stereo Using Multiple Plane Sweeps, Vision, Modeling, and Visualization Workshop, 2008.; C. Zach, D. Gallup, J.-M. Frahm, M. Niethammer, Fast Global Labeling for Real-Time Stereo Using Multiple Plane Sweeps, Vision, Modeling, and Visualization Workshop, 2008.
[30] J. Yuan, Y. Boykov, TV-Based Multi-label Image Segmentation with Label Cost Prior, BMVC, 2010.; J. Yuan, Y. Boykov, TV-Based Multi-label Image Segmentation with Label Cost Prior, BMVC, 2010.
[31] Zhang, Y.; Brady, M.; Smith, S., Segmentation of brain Mr images through a hidden Markov random field model and the expectation-maximization algorithm, IEEE Transactions on Medical Imaging, 20, 1, 45-57 (2001)
[32] Strong, D.; Chan, T., Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19, 165-187 (2003) · Zbl 1043.94512
[33] Setzer, S.; Steidl, G.; Teuber, T., On vector and matrix median computation, Journal of Computational and Applied Mathematics, 236, 2200-2222 (2012) · Zbl 1244.65063
[34] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[35] Chaux, C.; Jezierska, A.; Pesquet, J.-Ch.; Talbot, H., A spatial regularization approach for vector quantization, Journal of Mathematical Imaging and Vision, 42, 23-38 (2011) · Zbl 1255.68218
[36] Kersten, P. R., Fuzzy order statistics and their application to fuzzy clustering, IEEE Transactions on Fuzzy Systems, 7, 708-712 (1999)
[37] S. Miyamoto, Y. Agusta, Efficient algorithms for \(l_p\); S. Miyamoto, Y. Agusta, Efficient algorithms for \(l_p\)
[38] D.D. Overstreet, Generalized Fuzzy c-Means Clustering, Master’s thesis, Georgia Southern University, 1998.; D.D. Overstreet, Generalized Fuzzy c-Means Clustering, Master’s thesis, Georgia Southern University, 1998.
[39] Hathaway, R. J.; Bezdek, J. C.; Tucker, W., An improved convergence theory for the fuzzy isodata clustering algorithms, (Bezdek, J. C., Analysis of Fuzzy Information, vol. 3 (1987), CRC Press: CRC Press Boca Raton), 123-132
[40] Teboulle, M., A unified continuous optimization framework for center-based clustering methods, Journal of Machine Learning Research, 8, 65-102 (2007) · Zbl 1222.68318
[41] Potts, D.; Steidl, G., Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems, Linear Algebra and Its Applications, 281, 265-292 (1998) · Zbl 0934.65053
[42] Rao, K. R.; Yip, P., Discrete Cosine Transform (1990), Academic Press: Academic Press New York · Zbl 0726.65162
[43] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40, 1, 120-145 (2011) · Zbl 1255.68217
[44] Esser, E.; Zhang, X.; Chan, T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in image science, SIAM Journal on Imaging Sciences, 3, 1015-1046 (2010) · Zbl 1206.90117
[45] M. Zhu, T.F. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, UCLA CAM Report 08-34, 2008.; M. Zhu, T.F. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, UCLA CAM Report 08-34, 2008.
[46] Goldstein, T.; Osher, S., The split Bregman method for l1-regularized problems, SIAM Journal on Imaging Sciences, 2, 2, 323-343 (2009) · Zbl 1177.65088
[47] Eckstein, J.; Bertsekas, D. P., On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55, 293-318 (1992) · Zbl 0765.90073
[48] E. Esser, Applications of Lagrangian Based Alternating Direction Methods and Connections to Split Bregman, CAM Report 09-31, UCLA, 2009.; E. Esser, Applications of Lagrangian Based Alternating Direction Methods and Connections to Split Bregman, CAM Report 09-31, UCLA, 2009.
[49] Gabay, D., Applications of the method of multipliers to variational inequalities, (Fortin, M.; Glowinski, R., Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems (1983), North-Holland: North-Holland Amsterdam), 299-340, (Chapter IX) · Zbl 0525.65045
[50] Setzer, S., Operator splittings, Bregman methods and frame shrinkage in image processing, International Journal of Computer Vision, 92, 3, 265-280 (2011) · Zbl 1235.68314
[51] J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions, in: ICML ’08 Proceedings of the 25th International Conference on Machine Learning, ACM, New York, 2008.; J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions, in: ICML ’08 Proceedings of the 25th International Conference on Machine Learning, ACM, New York, 2008.
[52] Collins, D. L.; Zijdenbos, A. P.; Kollokian, V.; Sled, J. G.; Kabani, N. J.; Holmes, C. J.; Evans, A. C., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, 17, 3, 463-468 (1998)
[53] L. Steakley, Brain Scan Used in Court in Potential fMRI First \(\langle\) http://scopeblog.stanford.edu/archives/2009/11/fmri-brain-scan.html \(\rangle \); L. Steakley, Brain Scan Used in Court in Potential fMRI First \(\langle\) http://scopeblog.stanford.edu/archives/2009/11/fmri-brain-scan.html \(\rangle \)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.