×

A vertical track nonlinear energy sink. (English) Zbl 07912643

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
34A34 Nonlinear ordinary differential equations and systems
74K30 Junctions

References:

[1] Cao, Y. B.; Yao, H. L.; Han, J. C.; Li, Z.; Wen, B. C., Application of non-smooth NES in vibration suppression of rotor-blade systems, Applied Mathematical Modelling, 87, 351-371, 2020 · Zbl 1481.70064 · doi:10.1016/j.apm.2020.06.014
[2] Li, W. K.; Wierschem, N. E.; Li, X. H.; Yang, T.; Brennan, M. J., Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam, Nonlinear Dynamics, 100, 951-971, 2020 · doi:10.1007/s11071-020-05571-0
[3] Tehrani, G. G.; Dardel, M., Vibration mitigation of a flexible bladed rotor dynamic system with passive dynamic absorbers, Communications in Nonlinear Science and Numerical Simulation, 69, 1-30, 2019 · Zbl 1458.74062 · doi:10.1016/j.cnsns.2018.08.007
[4] Zhang, Y. F.; Kong, X. R.; Yue, C. F.; Xiong, H., Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness, Nonlinear Dynamics, 105, 167-190, 2021 · doi:10.1007/s11071-021-06615-9
[5] Zhang, Y. F.; Kong, X. R.; Yue, C. F.; Guo, J. S., Characteristic analysis and design of nonlinear energy sink with cubic damping considering frequency detuning, Nonlinear Dynamics, 111, 15817-15836, 2023 · doi:10.1007/s11071-023-08673-7
[6] Roncen, T.; Michon, G.; Manet, V., Design and experimental analysis of a pneumatic nonlinear energy sink, Mechanical Systems and Signal Processing, 190, 110088, 2023 · doi:10.1016/j.ymssp.2022.110088
[7] Dekemele, K.; Habib, G.; Loccufier, M., The periodically extended stiffness nonlinear energy sink, Mechanical Systems and Signal Processing, 169, 108706, 2022 · doi:10.1016/j.ymssp.2021.108706
[8] Yang, F.; Sedaghati, R.; Esmailzadeh, E., Vibration suppression of structures using tuned mass damper technology: a state-of-the-art review, Journal of Vibration and Control, 28, 812-836, 2021 · doi:10.1177/1077546320984305
[9] Kim, S. Y.; Lee, C. H., Analysis and optimization of multiple tuned mass dampers with coulomb dry friction, Engineering Structures, 209, 110011, 2020 · doi:10.1016/j.engstruct.2019.110011
[10] Pietrosanti, D.; de Angelis, M.; Basili, M., A generalized 2-DOF model for optimal design of MDOF structures controlled by tuned mass damper inerter (TMDI), International Journal of Mechanical Sciences, 185, 105849, 2020 · doi:10.1016/j.ijmecsci.2020.105849
[11] Ding, H.; Chen, L. Q., Designs, analysis, and applications of nonlinear energy sinks, Nonlinear Dynamics, 100, 3061-3107, 2020 · doi:10.1007/s11071-020-05724-1
[12] Wang, H. L.; Ding, H., Vibration reduction of floating raft system based on nonlinear energy sinks, Ocean Engineering, 288, 116211, 2023 · doi:10.1016/j.oceaneng.2023.116211
[13] Sui, P.; Shen, Y. J.; Wang, X. N., Study on response mechanism of nonlinear energy sink with inerter and grounded stiffness, Nonlinear Dynamics, 111, 7157-7179, 2023 · doi:10.1007/s11071-022-08226-4
[14] Wang, X.; Geng, X. F.; Mao, X. Y.; Ding, H.; Jing, X. J.; Chen, L. Q., Theoretical and experimental analysis of vibration reduction for piecewise linear system by nonlinear energy sink, Mechanical Systems and Signal Processing, 172, 109001, 2022 · doi:10.1016/j.ymssp.2022.109001
[15] Vaurigaud, B.; Ture savadkoohi, A.; Lamarque, C. H., Targeted energy transfer with parallel nonlinear energy sinks, part I: design theory and numerical results, Nonlinear Dynamics, 66, 763-780, 2011 · Zbl 1337.70043 · doi:10.1007/s11071-011-9949-x
[16] Xue, J. R.; Zhang, Y. W.; Ding, H.; Chen, L. Q., Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation, Applied Mathematics and Mechanics (English Edition), 41, 1, 1-14, 2020 · Zbl 1462.74071 · doi:10.1007/s10483-020-2560-6
[17] Oliva, M.; Barone, G.; Lo Iacono, F.; Navarra, G., Nonlinear energy sink and Eurocode 8: an optimal design approach based on elastic response spectra, Engineering Structures, 221, 111020, 2020 · doi:10.1016/j.engstruct.2020.111020
[18] Dekemele, K., Tailored nonlinear stiffness and geometric damping: applied to a bistable vibration absorber, International Journal of Non-Linear Mechanics, 157, 104548, 2023 · doi:10.1016/j.ijnonlinmec.2023.104548
[19] Li, H. Q.; Li, A.; Kong, X. R.; Xiong, H., Dynamics of an electromagnetic vibro-impact nonlinear energy sink, applications in energy harvesting and vibration absorption, Nonlinear Dynamics, 108, 1027-1043, 2022 · doi:10.1007/s11071-022-07253-5
[20] Jin, Y. Z.; Liu, K. F.; Xiong, L. Y.; Tang, L. H., A non-traditional variant nonlinear energy sink for vibration suppression and energy harvesting, Mechanical Systems and Signal Processing, 181, 109479, 2022 · doi:10.1016/j.ymssp.2022.109479
[21] Liu, Q. H.; Cao, J. Y.; Zhang, Y.; Zhao, Z. Y.; Kerschen, G. T.; Jing, X. J., Interpretable sparse identification of a bistable nonlinear energy sink, Mechanical Systems and Signal Processing, 193, 110254, 2023 · doi:10.1016/j.ymssp.2023.110254
[22] Zuo, H. R.; Zhu, S. Y., Development of novel track nonlinear energy sinks for seismic performance improvement of offshore wind turbine towers, Mechanical Systems and Signal Processing, 172, 108975, 2022 · doi:10.1016/j.ymssp.2022.108975
[23] Wang, J. J.; Zhang, C.; Li, H. B.; Liu, Z. B., Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation, Engineering Structures, 237, 112184, 2021 · doi:10.1016/j.engstruct.2021.112184
[24] Chen, J. N.; Zhang, W.; Yao, M. H.; Liu, J.; Sun, M., Vibration reduction in truss core sandwich plate with internal nonlinear energy sink, Composite Structures, 193, 180-188, 2018 · doi:10.1016/j.compstruct.2018.03.048
[25] Yao, H. L.; Wang, Y. W.; Xie, L.; Wen, B. C., Bi-stable buckled beam nonlinear energy sink applied to rotor system, Mechanical Systems and Signal Processing, 138, 106546, 2020 · doi:10.1016/j.ymssp.2019.106546
[26] Das, R.; Bajaj, A. K.; Gupta, S., Nonlinear energy sink coupled with a nonlinear oscillator, International Journal of Non-Linear Mechanics, 148, 104285, 2023 · doi:10.1016/j.ijnonlinmec.2022.104285
[27] Javidialesaadi, A.; Wierschem, N. E., An inerter-enhanced nonlinear energy sink, Mechanical Systems and Signal Processing, 129, 449-454, 2019 · doi:10.1016/j.ymssp.2019.04.047
[28] Yang, T. Z.; Dang, W. H.; Chen, L. Q., Two-dimensional inerter-enhanced nonlinear energy sink, Nonlinear Dynamics, 112, 379-401, 2023 · doi:10.1007/s11071-023-09056-8
[29] Geng, X. F.; Ding, H.; Mao, X. Y.; Chen, L. Q., Nonlinear energy sink with limited vibration amplitude, Mechanical Systems and Signal Processing, 156, 107625, 2021 · doi:10.1016/j.ymssp.2021.107625
[30] Geng, X. F.; Ding, H., Two-modal resonance control with an encapsulated nonlinear energy sink, Journal of Sound and Vibration, 520, 116667, 2022 · doi:10.1016/j.jsv.2021.116667
[31] Geng, X. F.; Ding, H.; Mao, X. Y.; Chen, L. Q., A ground-limited nonlinear energy sink, Acta Mechanica Sinica, 38, 521558, 2022 · doi:10.1007/s10409-022-09027-x
[32] Zhang, Z.; Gao, Z. T.; Fang, B.; Zhang, Y. W., Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks, Nonlinear Dynamics, 109, 1259-1275, 2022 · doi:10.1007/s11071-022-07490-8
[33] Chen, H. Y.; Mao, X. Y.; Ding, H.; Chen, L. Q., Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks, Mechanical Systems and Signal Processing, 135, 106383, 2020 · doi:10.1016/j.ymssp.2019.106383
[34] Cao, R. Q.; Wang, Z. J.; Zang, J.; Zhang, Y. W., Resonance response of fluid-conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink, Applied Mathematics and Mechanics (English Edition), 43, 12, 1873-1886, 2022 · Zbl 1512.74034 · doi:10.1007/s10483-022-2925-8
[35] Chen, H. Y.; Zeng, Y. C.; Ding, H.; Lai, S. K.; Chen, L. Q., Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink, Applied Mathematics and Mechanics (English Edition), 45, 3, 389-406, 2024 · doi:10.1007/s10483-024-3095-9
[36] Wang, J. J.; Wierschem, N. E.; Spencer, B. F Jr.; Lu, X. L., Track nonlinear energy sink for rapid response reduction in building structures, Journal of Engineering Mechanics, 141, 0000824, 2015 · doi:10.1061/(ASCE)EM.1943-7889.0000824
[37] Wang, J. J.; Zheng, Y. Q., Development and robustness investigation of track-based asymmetric nonlinear energy sink for impulsive response mitigation, Engineering Structures, 286, 116127, 2023 · doi:10.1016/j.engstruct.2023.116127
[38] Ding, H.; Shao, Y. F., Nes cell, Applied Mathematics and Mechanics (English Edition), 43, 12, 1793-1804, 2022 · Zbl 1506.74134 · doi:10.1007/s10483-022-2934-6
[39] Zhang, Y. W.; Xu, K. F.; Zang, J.; Ni, Z. Y.; Zhu, Y. P.; Chen, L. Q., Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions, Applied Mathematics and Mechanics (English Edition), 40, 12, 1791-1804, 2019 · doi:10.1007/s10483-019-2548-9
[40] Yao, H. L.; Cao, Y. B.; Ding, Z. Y.; Wen, B. C., Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems, Mechanical Systems and Signal Processing, 124, 237-253, 2019 · doi:10.1016/j.ymssp.2019.01.054
[41] Bab, S.; Khadem, S. E.; Shahgholi, M.; Abbasi, A., Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks, Mechanical Systems and Signal Processing, 84, 128-157, 2017 · doi:10.1016/j.ymssp.2016.07.002
[42] Chen, L. Q.; Li, X.; Lu, Z. Q.; Zhang, Y. W.; Ding, H., Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically, Journal of Sound and Vibration, 451, 99-119, 2019 · doi:10.1016/j.jsv.2019.03.005
[43] Zhang, Y. W.; Lu, Y. N.; Chen, L. Q., Energy harvesting via nonlinear energy sink for whole-spacecraft, Science China Technological Sciences, 62, 1483-1491, 2019 · doi:10.1007/s11431-018-9468-8
[44] Zhang, Y. W.; Wang, S. L.; Ni, Z. Y.; Fang, Z. W.; Zang, J.; Fang, B., Integration of a nonlinear vibration absorber and levitation magnetoelectric energy harvester for whole-spacecraft systems, Acta Mechanica Solida Sinica, 32, 298-309, 2019 · doi:10.1007/s10338-019-00081-y
[45] Wang, Z. J.; Zang, J.; Zhang, Y. W., Method for controlling vibration and harvesting energy by spacecraft: theory and experiment, AIAA Journal, 60, 6097-6115, 2022 · doi:10.2514/1.J061998
[46] Chen, D. Y.; Laith, K. A.; Wang, G. P.; Rui, G. P.; Pier, M., Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs), Nonlinear Dynamics, 94, 925-957, 2018 · doi:10.1007/s11071-018-4402-z
[47] Li, X.; Ding, H.; Chen, L. Q., Effects of weights on vibration suppression via a nonlinear energy sink under vertical stochastic excitations, Mechanical Systems and Signal Processing, 173, 109073, 2022 · doi:10.1016/j.ymssp.2022.109073
[48] Liu, X. C.; Ding, H.; Geng, X. F.; Wei, K. X.; Lai, S. K.; Chen, L. Q., A magnetic nonlinear energy sink with quasi-zero stiffness characteristics, Nonlinear Dynamics, 112, 5895-5918, 2024 · doi:10.1007/s11071-024-09379-0
[49] Dekemele, K.; Van Torre, P.; Loccufier, M., Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations, Journal of Sound and Vibration, 473, 115243, 2020 · doi:10.1016/j.jsv.2020.115243
[50] Fu, H. L.; Yeatman, E. M., Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation, Mechanical Systems and Signal Processing, 125, 229-244, 2019 · doi:10.1016/j.ymssp.2018.04.043
[51] Zheng, Y. S.; Zhang, X. N.; Luo, Y. J.; Zhang, Y. H.; Xie, S. L., Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness, Mechanical Systems and Signal Processing, 100, 135-151, 2018 · doi:10.1016/j.ymssp.2017.07.028
[52] Dou, J. X.; Yao, H. L.; Li, H.; Li, J. L.; Jia, R. Y., A track nonlinear energy sink with restricted motion for rotor systems, International Journal of Mechanical Sciences, 259, 108631, 2023 · doi:10.1016/j.ijmecsci.2023.108631
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.