×

Application of non-smooth NES in vibration suppression of rotor-blade systems. (English) Zbl 1481.70064

Summary: The non-smooth nonlinear energy sink (NSNES) is used to suppress the vibration of the rotor-blade system. Firstly, the structure and working principle of the NSNES for rotor-blade system are introduced. Then, the dynamics model of the rotor-blade-NSNES system is established by Lagrangian method. And then, numerical simulations are applied to evaluate the vibration suppression ability of the NSNES on rotor and blade. The results show that the suppression rates of NSNES on the rotor and the blade can reach 81% and 74% in steady state resonance under given parameters, respectively; and for transient vibration of blade, a 1.85 times dissipating speed is obtained in rotor-blade system with NSNES than that without NSNES. In particular, NSNES has better vibration suppression capability than linear dynamic vibration absorber (LDVA) when both have the same vibration absorption mass.

MSC:

70H03 Lagrange’s equations
Full Text: DOI

References:

[1] Zapoměl, J.; Ferfecki, P.; Forte, P., Vibrations attenuation of a Jeffcott rotor by application of a new mathematical model of a magnetorheological squeeze film damper based on a bilinear oil representation[J], Acta Mech., 230, 5, 1625-1640 (2019)
[2] Yu, X.; Mao, K.; Lei, S., A new adaptive proportional-integral control strategy for rotor active balancing systems during acceleration[J], Mech. Mach. Theory, 136, 105-121 (2019)
[3] Beltran-Carbajal, F.; Silva-Navarro, G.; Arias-Montiel, M., Active unbalance control of rotor systems using on-line algebraic identification methods[J], Asian J. Control, 15, 6, 1627-1637 (2013) · Zbl 1280.93087
[4] Liu, Y.; Ming, S.; Zhao, S., Research on automatic balance control of active magnetic bearing-rigid rotor system[J], Shock Vib., 2019, 1-13 (2019)
[5] Majewska, K. M.; żak, A. J.; Ostachowicz, W. M., Vibration control of a rotor by magnetic shape memory actuators—An experimental work[J], Smart Mater. Struct., 19, 8, Article 085004 pp. (2010)
[6] Silvagni, M.; Tonoli, A.; Bonfitto, A., Self-powered eddy current damper for rotor dynamic applications [J], J. Vib. Acoust. Trans. ASME, 137, 1, Article 011015 pp. (2015)
[7] Shi, C.; Parker, R. G., Vibration modes and natural frequency veering in three-dimensional, cyclically symmetric centrifugal pendulum vibration absorber systems[J], J. Vib. Acoust., 136, 1, Article 011014 pp. (2014)
[8] Monroe, R. J.; Shaw, S. W., Nonlinear transient dynamics of pendulum torsional vibration absorbers—Part I: theory[J], J. Vib. Acoust., 135, 1, Article 011017 pp. (2013)
[9] Shi, C.; Parker R, G.; Shaw S, W., Tuning of centrifugal pendulum vibration absorbers for translational and rotational vibration reduction[J], Mech. Mach. Theory, 66, 56-65 (2013)
[10] Doubrawa Filho, F. J.; Luersen, M. A.; Bavastri, C. A., Optimal design of viscoelastic vibration absorbers for rotating systems[J], J. Vib. Control, 17, 5, 699-710 (2011) · Zbl 1271.74147
[11] Campos, R. O.; Nicoletti, R., Vibration reduction in vertical washing machine using a rotating dynamic absorber[J], J. Brazil. Soc. Mech. Sci. Eng., 37, 1, 339-348 (2015)
[12] Hu, H.; He, L., Online control of critical speed vibrations of a single-span rotor by a rotor dynamic vibration absorber at different installation positions[J], J. Mech. Sci. Technol., 31, 5, 2075-2081 (2017)
[13] Yao, H.; Chen, Z.; Wen, B., Dynamic vibration absorber with negative stiffness for rotor system[J], Shock Vib., 2016, 1-13 (2016)
[14] Zang, J.; Chen, L. Q., Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink[J], Acta Mech. Sinica, 33, 4, 801-822 (2017) · Zbl 1381.70038
[15] Lee, Y. S.; Vakakis, A. F.; Bergman, L. A., Passive non-linear targeted energy transfer and its applications to vibration absorption: a review[J], Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn., 222, 2, 77-134 (2008)
[16] Gendelman, O. V.; Starosvetsky, Y., Quasi-periodic response regimes of linear oscillator coupled to nonlinear energy sink under periodic forcing[J], J. Appl. Mech., 74, 2, 325-331 (2007) · Zbl 1111.74413
[17] Bab, S.; Khadem, S. E.; Shahgholi, M., Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink[J], Meccanica, 50, 9, 2441-2460 (2015)
[18] Bab, S.; Khadem, S. E.; Shahgholi, M., Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink[J], Int. J. Non Linear Mech., 67, 251-266 (2014)
[19] Bab, S.; Khadem, S. E.; Shahgholi, M., Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks[J], Mech. Syst. Signal Process., 84, 128-157 (2017)
[20] Wang, D.; Hao, Z.; Chen, Y., Dynamic and resonance response analysis for a turbine blade with varying rotating speed[J], J. Theor. Appl. Mech., 56, 1, 31-42 (2018)
[21] Guo, C.; AL-Shudeifat, M. A.; Vakakis, A. F., Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks[J], Nonlinear Dyn., 79, 1, 527-538 (2015)
[22] Tehrani, G. G.; Dardel, M., Mitigation of nonlinear oscillations of a jeffcott rotor system with an optimized damper and nonlinear energy sink[J], Int. J. Non Linear Mech., 98, 122-136 (2018)
[23] Dasgupta, S. S.; Rajan, J. A., Steady-state and transient responses of a flexible eccentric spinning Shaft[J], FME Trans., 46, 1, 133-137 (2018)
[24] Yao, H.; Zheng, D.; Wen, B., Magnetic nonlinear energy sink for vibration attenuation of unbalanced rotor system[J], Shock Vib., 2017, 1-15 (2017)
[25] Yao, H.; Cao, Y.; Ding, Z., Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems[J], Mech. Syst. Signal Process., 124, 237-253 (2019)
[26] Bab, S.; Khadem, S. E.; Mahdiabadi, M. K., Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES)[J], J. Vib. Control, 23, 6, 1001-1025 (2017)
[27] Ahmadabadi, Z. N., Nonlinear energy transfer from an engine crankshaft to an essentially nonlinear attachment[J], J. Sound Vib., 443, 139-154 (2019)
[28] Haris, A.; Motato, E.; Theodossiades, S., A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities[J], Appl. Math. Model, 46, 674-690 (2017) · Zbl 1443.70004
[29] Haris, A.; Alevras, P.; Mohammadpour, M., Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems[J], Nonlinear Dyn, 1-17 (2020)
[30] Motato, E.; Haris, A.; Theodossiades, S., Targeted energy transfer and modal energy redistribution in automotive drivetrains[J], Nonlinear Dyn, 87, 1, 169-190 (2017)
[31] Haris, A.; Motato, E.; Mohammadpour, M., On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain[J], Int. J. Non Linear Mech., 96, 22-35 (2017)
[32] Ebrahimzade, N.; Dardel, M.; Shafaghat, R., Investigating the aeroelastic behaviors of rotor blades with nonlinear energy sinks[J], AIAA J., 56, 7, 2856-2869 (2018)
[33] Lee, Y. S.; Vakakis, A. F.; Bergman, L. A., Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks[J], Struct. Control Health Monitor. Offic. J. Int. Assoc. Struct. Control Monitor. Eur. Assoc. Control Struct., 13, 1, 41-75 (2006)
[34] Lee, Y.; Vakakis, A.; Bergman, L., Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: theory[J], AIAA J., 45, 3, 693-711 (2007)
[35] Lee, Y. S.; Kerschen, G.; McFarland, D. M., Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments[J], AIAA J., 45, 10, 2391-2400 (2007)
[36] Duffy, K.; Bagley, R.; Mehmed, O., On a self-tuning impact vibration damper for rotating turbomachinery[C], (35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2000)), 3100
[37] Tehrani, G. G.; Dardel, M., Vibration mitigation of a flexible bladed rotor dynamic system with passive dynamic absorbers[J], Commun. Nonlinear Sci. Numer. Simulat., 69, 1-30 (2019) · Zbl 1458.74062
[38] Yao, H.; Cao, Y.; Zhang, S., A novel energy sink with piecewise linear stiffness[J], Nonlinear Dyn., 94, 3, 2265-2275 (2018)
[39] Li, C.; She, H.; Tang, Q., The effect of blade vibration on the nonlinear characteristics of rotor-bearing system supported by nonlinear suspension[J], Nonlinear Dyn., 89, 2, 987-1010 (2017)
[40] Chiu, Y. J.; Yang, C. H., The coupled vibration in a rotating multi-disk rotor system with grouped blades[J], J. Mech. Sci. Technol., 28, 5, 1653-1662 (2014)
[41] Den Hartog, J. P., Mechanical vibrations[M], Courier Corporat. (1985) · Zbl 0071.39304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.