×

Fermionic quantum computation with Cooper pair splitters. (English) Zbl 07912430

Summary: We propose a practical implementation of a universal quantum computer that uses local fermionic modes (LFM) rather than qubits. The device consists of quantum dots tunnel-coupled by a hybrid superconducting island and a tunable capacitive coupling between the dots. We show that coherent control of Cooper pair splitting, elastic cotunneling, and Coulomb interactions implements the universal set of quantum gates defined by Bravyi and Kitaev [1]. Due to the similarity with charge qubits, we expect charge noise to be the main source of decoherence. For this reason, we also consider an alternative design where the quantum dots have tunable coupling to the superconductor. In this second device design, we show that there is a sweet spot for which the local fermionic modes are charge neutral, making the device insensitive to charge noise effects. Finally, we compare both designs and their experimental limitations and suggest future efforts to overcome them.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
68Qxx Theory of computing
81-XX Quantum theory

Software:

ReCirq

References:

[1] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Ann. Phys. 298, 210 (2002), doi:10.1006/aphy.2002.6254. · Zbl 0995.81012 · doi:10.1006/aphy.2002.6254
[2] M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339, 1169 (2013), doi:10.1126/science.1231930. · doi:10.1126/science.1231930
[3] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11, 369 (2020), doi:10.1146/annurev-conmatphys-031119-050605. · doi:10.1146/annurev-conmatphys-031119-050605
[4] C. D. Bruzewicz, J. Chiaverini, R. McConnell and J. M. Sage, Trapped-ion quan-tum computing: Progress and challenges, Appl. Phys. Rev. 6, 021314 (2019), doi:10.1063/1.5088164. · doi:10.1063/1.5088164
[5] H. Haffner, C. Roos and R. Blatt, Quantum computing with trapped ions, Phys. Rep. 469, 155 (2008), doi:10.1016/j.physrep.2008.09.003. · doi:10.1016/j.physrep.2008.09.003
[6] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol and J. R. Petta, Semiconductor spin qubits, Rev. Mod. Phys. 95, 025003 (2023), doi:10.1103/RevModPhys.95.025003. · doi:10.1103/RevModPhys.95.025003
[7] A. Rahmani, K. J. Sung, H. Putterman, P. Roushan, P. Ghaemi and Z. Jiang, Cre-ating and manipulating a Laughlin-type ν = 1/3 fractional quantum Hall state on a quantum computer with linear depth circuits, PRX Quantum 1, 020309 (2020), doi:10.1103/prxquantum.1.020309. · doi:10.1103/prxquantum.1.020309
[8] F. Arute et al., Observation of separated dynamics of charge and spin in the Fermi-Hubbard model, (arXiv preprint) doi:10.48550/arXiv.2010.07965. · doi:10.48550/arXiv.2010.07965
[9] F. Arute et al., Hartree-Fock on a superconducting qubit quantum computer, Science 369, 1084 (2020), doi:10.1126/science.abb9811. · Zbl 1478.81010 · doi:10.1126/science.abb9811
[10] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin and X. Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92, 015003 (2020), doi:10.1103/RevModPhys.92.015003. · doi:10.1103/RevModPhys.92.015003
[11] J. D. Whitfield, J. Biamonte and A. Aspuru-Guzik, Simulation of electronic structure Hamiltonians using quantum computers, Mol. Phys. 109, 735 (2011), doi:10.1080/00268976.2011.552441. · doi:10.1080/00268976.2011.552441
[12] A. S. Wightman (ed.), The collected works of Eugene Paul Wigner, Springer, Berlin, Hei-delberg, Germany, ISBN 9783642081545 (1993), doi:10.1007/978-3-662-02781-3. · doi:10.1007/978-3-662-02781-3
[13] M. B. Hastings and R. O’Donnell, Optimizing strongly interacting fermionic Hamiltonians, in Proceedings of the 54th annual ACM SIGACT symposium on theory of computing, New York, USA (2022), doi:10.1145/3519935.3519960. · Zbl 07774378 · doi:10.1145/3519935.3519960
[14] Y. Herasymenko, M. Stroeks, J. Helsen and B. Terhal, Optimizing sparse fermionic Hamil-tonians, Quantum 7, 1081 (2023), doi:10.22331/q-2023-08-10-1081. · doi:10.22331/q-2023-08-10-1081
[15] T. E. O’Brien, P. Rożek and A. R. Akhmerov, Majorana-based fermionic quantum computa-tion, Phys. Rev. Lett. 120, 220504 (2018), doi:10.1103/PhysRevLett.120.220504. · doi:10.1103/PhysRevLett.120.220504
[16] D. González-Cuadra et al., Fermionic quantum processing with programmable neutral atom arrays, Proc. Natl. Acad. Sci. 120, e2304294120 (2023), doi:10.1073/pnas.2304294120. · doi:10.1073/pnas.2304294120
[17] D. Bluvstein et al., A quantum processor based on coherent transport of entangled atom arrays, Nature 604, 451 (2022), doi:10.1038/s41586-022-04592-6. · doi:10.1038/s41586-022-04592-6
[18] M. Leijnse and K. Flensberg, Parity qubits and poor man’s Majorana bound states in double quantum dots, Phys. Rev. B 86, 134528 (2012), doi:10.1103/physrevb.86.134528. · doi:10.1103/physrevb.86.134528
[19] Q. Wang, S. L. D. ten Haaf, I. Kulesh, D. Xiao, C. Thomas, M. J. Manfra and S. Goswami, Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas, Nat. Commun. 14, 4876 (2023), doi:10.1038/s41467-023-40551-z. · doi:10.1038/s41467-023-40551-z
[20] G. Wang et al., Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires, Nature 612, 448 (2022), doi:10.1038/s41586-022-05352-2. · doi:10.1038/s41586-022-05352-2
[21] C.-X. Liu, G. Wang, T. Dvir and M. Wimmer, Tunable superconducting coupling of quantum dots via Andreev bound states in semiconductor-superconductor nanowires, Phys. Rev. Lett. 129, 267701 (2022), doi:10.1103/PhysRevLett.129.267701. · doi:10.1103/PhysRevLett.129.267701
[22] A. Bordin et al., Tunable crossed Andreev reflection and elastic cotunneling in hybrid nanowires, Phys. Rev. X 13, 031031 (2023), doi:10.1103/PhysRevX.13.031031. · doi:10.1103/PhysRevX.13.031031
[23] T. Dvir et al., Realization of a minimal Kitaev chain in coupled quantum dots, Nature 614, 445 (2023), doi:10.1038/s41586-022-05585-1. · doi:10.1038/s41586-022-05585-1
[24] Z. Scherübl, G. Fülöp, J. Gramich, A. Pályi, C. Schönenberger, J. Nygård and S. Csonka, From Cooper pair splitting to nonlocal spectroscopy of a Shiba state, Phys. Rev. Res. 4, 023143 (2022), doi:10.1103/PhysRevResearch.4.023143. · doi:10.1103/PhysRevResearch.4.023143
[25] O. Kürtössy, Z. Scherübl, G. Fülöp, I. E. Lukács, T. Kanne, J. Nygård, P. Makk and S. Csonka, Parallel InAs nanowires for Cooper pair splitters with Coulomb repulsion, npj Quan-tum Mater. 7, 88 (2022), doi:10.1038/s41535-022-00497-9. · doi:10.1038/s41535-022-00497-9
[26] L. Hofstetter, S. Csonka, J. Nygård and C. Schönenberger, Cooper pair splitter realized in a two-quantum-dot Y-junction, Nature 461, 960 (2009), doi:10.1038/nature08432. · doi:10.1038/nature08432
[27] G. Fülöp et al., Magnetic field tuning and quantum interference in a Cooper pair splitter, Phys. Rev. Lett. 115, 227003 (2015), doi:10.1103/physrevlett.115.227003. · doi:10.1103/physrevlett.115.227003
[28] D. Kim et al., Microwave-driven coherent operation of a semiconductor quantum dot charge qubit, Nat. Nanotechnol. 10, 243 (2015), doi:10.1038/nnano.2014.336. · doi:10.1038/nnano.2014.336
[29] J. Gorman, D. G. Hasko and D. A. Williams, Charge-qubit operation of an isolated double quantum dot, Phys. Rev. Lett. 95, 090502 (2005), doi:10.1103/PhysRevLett.95.090502. · doi:10.1103/PhysRevLett.95.090502
[30] M. W. A. de Moor et al., Electric field tunable superconductor-semiconductor coupling in Majorana nanowires, New J. Phys. 20, 103049 (2018), doi:10.1088/1367-2630/aae61d. · doi:10.1088/1367-2630/aae61d
[31] I. van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven and M. Wimmer, Spin-orbit interaction in InSb nanowires, Phys. Rev. B 91, 201413 (2015), doi:10.1103/PhysRevB.91.201413. · doi:10.1103/PhysRevB.91.201413
[32] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov and L. P. Kouwenhoven, Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires, Phys. Rev. Lett. 108, 166801 (2012), doi:10.1103/physrevlett.108.166801. · doi:10.1103/physrevlett.108.166801
[33] J. A. Schreier et al., Suppressing charge noise decoherence in superconducting charge qubits, Phys. Rev. B 77, 180502 (2008), doi:10.1103/physrevb.77.180502. · doi:10.1103/physrevb.77.180502
[34] A. Hamo, A. Benyamini, I. Shapir, I. Khivrich, J. Waissman, K. Kaasbjerg, Y. Oreg, F. von Oppen and S. Ilani, Electron attraction mediated by Coulomb repulsion, Nature 535, 395 (2016), doi:10.1038/nature18639. · doi:10.1038/nature18639
[35] N. Materise, M. C. Dartiailh, W. M. Strickland, J. Shabani and E. Kapit, Tunable capacitor for superconducting qubits using an InAs/InGaAs heterostructure, Quantum Sci. Technol. 8, 045014 (2023), doi:10.1088/2058-9565/aceb18. · doi:10.1088/2058-9565/aceb18
[36] R. S. Eggli et al., Cryogenic hyperabrupt strontium titanate varactors for sen-sitive reflectometry of quantum dots, Phys. Rev. Appl. 20, 054056 (2023), doi:10.1103/physrevapplied.20.054056. · doi:10.1103/physrevapplied.20.054056
[37] W. Lu, Z. Ji, L. Pfeiffer, K. W. West and A. J. Rimberg, Real-time detection of electron tunnelling in a quantum dot, Nature 423, 422 (2003), doi:10.1038/nature01642. · doi:10.1038/nature01642
[38] S. T. Gill, J. Damasco, D. Car, E. P. A. M. Bakkers and N. Mason, Hybrid superconductor-quantum point contact devices using InSb nanowires, Appl. Phys. Lett. 109, 422 (2016), doi:10.1063/1.4971394. · doi:10.1063/1.4971394
[39] Ö. Gül et al., Hard superconducting gap in InSb nanowires, Nano Lett. 17, 2690 (2017), doi:10.1021/acs.nanolett.7b00540. · doi:10.1021/acs.nanolett.7b00540
[40] Z. Su, A. B. Tacla, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, A. J. Daley, D. Pekker and S. M. Frolov, Andreev molecules in semiconductor nanowire double quantum dots, Nat. Commun. 8, 585 (2017), doi:10.1038/s41467-017-00665-7. · doi:10.1038/s41467-017-00665-7
[41] P. Zhang, H. Wu, J. Chen, S. A. Khan, P. Krogstrup, D. Pekker and S. M. Frolov, Signatures of Andreev blockade in a double quantum dot coupled to a superconductor, Phys. Rev. Lett. 128, 046801 (2022), doi:10.1103/physrevlett.128.046801. · doi:10.1103/physrevlett.128.046801
[42] T. D. Stanescu and S. Das Sarma, Proximity-induced low-energy renormalization in hy-brid semiconductor-superconductor Majorana structures, Phys. Rev. B 96, 014510 (2017), doi:10.1103/PhysRevB.96.014510. · doi:10.1103/PhysRevB.96.014510
[43] K. Vilkelis, A. Manesco, J. D. Torres Luna, S. Miles, M. Wimmer and A. Akhmerov, Fermionic quantum computation with Cooper pair splitters, Zenodo (2024), doi:10.5281/zenodo.10838608. · doi:10.5281/zenodo.10838608
[44] I. A. Day, S. Miles, H. K. Kerstens, D. Varjas and A. R. Akhmerov, Pymablock: An algorithm and a package for quasi-degenerate perturbation theory, (arXiv preprint) doi:10.48550/arXiv.2404.03728. · doi:10.48550/arXiv.2404.03728
[45] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha and L. P. Kouwenhoven, Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1 (2002), doi:10.1103/RevModPhys.75.1. · doi:10.1103/RevModPhys.75.1
[46] M. Hamada, The minimum number of rotations about two axes for constructing an arbi-trarily fixed rotation, R. Soc. Open sci. 1, 140145 (2014), doi:10.1098/rsos.140145. · doi:10.1098/rsos.140145
[47] K. D. Petersson, J. R. Petta, H. Lu and A. C. Gossard, Quantum coherence in a one-electron semiconductor charge qubit, Phys. Rev. Lett. 105, 246804 (2010), doi:10.1103/PhysRevLett.105.246804. · doi:10.1103/PhysRevLett.105.246804
[48] B. Paquelet Wuetz, D. Degli Esposti, A.-M. J. Zwerver, S. V. Amitonov, M. Botifoll, J. Arbiol, L. M. K. Vandersypen, M. Russ and G. Scappucci, Reducing charge noise in quantum dots by using thin silicon quantum wells, Nat. Commun. 14, 1385 (2023), doi:10.1038/s41467-023-36951-w. · doi:10.1038/s41467-023-36951-w
[49] J. W. G. van den Berg, S. Nadj-Perge, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov and L. P. Kouwenhoven, Fast spin-orbit qubit in an indium antimonide nanowire, Phys. Rev. Lett. 110, 066806 (2013), doi:10.1103/PhysRevLett.110.066806. · doi:10.1103/PhysRevLett.110.066806
[50] M. Geier, R. S. Souto, J. Schulenborg, S. Asaad, M. Leijnse and K. Flens-berg, A fermion-parity qubit in a proximitized double quantum dot, (arXiv preprint) doi:10.48550/arXiv.2307.05678. · doi:10.48550/arXiv.2307.05678
[51] F. Zatelli et al., Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states, (arXiv preprint) doi:10.48550/arXiv.2311.03193. · doi:10.48550/arXiv.2311.03193
[52] S. Vijay and L. Fu, Quantum error correction for complex and Majorana fermion qubits, (arXiv preprint) doi:10.48550/arXiv.1703.00459. · doi:10.48550/arXiv.1703.00459
[53] C. T. Ke et al., Ballistic superconductivity and tunable π-junctions in InSb quantum wells, Nat. Commun. 10, 3764 (2019), doi:10.1038/s41467-019-11742-4. · doi:10.1038/s41467-019-11742-4
[54] H. Ren et al., Topological superconductivity in a phase-controlled Josephson junction, Na-ture 569, 93 (2019), doi:10.1038/s41586-019-1148-9. · doi:10.1038/s41586-019-1148-9
[55] A. Fornieri et al., Evidence of topological superconductivity in planar Josephson junctions, Nature 569, 89 (2019), doi:10.1038/s41586-019-1068-8. · doi:10.1038/s41586-019-1068-8
[56] A. Banerjee et al., Local and nonlocal transport spectroscopy in planar Josephson junctions, Phys. Rev. Lett. 130, 096202 (2023), doi:10.1103/PhysRevLett.130.096202. · doi:10.1103/PhysRevLett.130.096202
[57] A. Banerjee, M. Geier, M. A. Rahman, D. S. Sanchez, C. Thomas, T. Wang, M. J. Manfra, K. Flensberg and C. M. Marcus, Control of Andreev bound states using superconducting phase texture, Phys. Rev. Lett. 130, 116203 (2023), doi:10.1103/PhysRevLett.130.116203. · doi:10.1103/PhysRevLett.130.116203
[58] A. Banerjee et al., Signatures of a topological phase transition in a planar Josephson junc-tion, Phys. Rev. B 107, 245304 (2023), doi:10.1103/PhysRevB.107.245304. · doi:10.1103/PhysRevB.107.245304
[59] T.-K. Hsiao, C. J. van Diepen, U. Mukhopadhyay, C. Reichl, W. Wegscheider and L. M. K. Vandersypen, Efficient orthogonal control of tunnel couplings in a quantum dot array, Phys. Rev. Appl. 13, 054018 (2020), doi:10.1103/physrevapplied.13.054018. · doi:10.1103/physrevapplied.13.054018
[60] C. J. van Diepen, T.-K. Hsiao, U. Mukhopadhyay, C. Reichl, W. Wegscheider and L. M. K. Vandersypen, Quantum simulation of antiferromagnetic Heisenberg chain with gate-defined quantum dots, Phys. Rev. X 11, 041025 (2021), doi:10.1103/physrevx.11.041025. · doi:10.1103/physrevx.11.041025
[61] F. K. Malinowski et al., Quantum capacitance of a superconducting subgap state in an elec-trostatically floating dot-island, (arXiv preprint) doi:10.48550/arXiv.2210.01519. · doi:10.48550/arXiv.2210.01519
[62] V. V. Baran and J. Paaske, BCS surrogate models for floating superconductor-semiconductor hybrids, (arXiv preprint) doi:10.48550/arXiv.2402.18357. · doi:10.48550/arXiv.2402.18357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.