×

The minimal exponent and \(k\)-rationality for local complete intersections. (Exposant minimal et \(k\)-rationalité pour les sous-variétés localement intersections complètes.) (English. French summary) Zbl 07912278

Summary: We show that if \(Z\) is a local complete intersection subvariety of a smooth complex variety \(X\), of pure codimension \(r\), then \(Z\) has \(k\)-rational singularities if and only if \(\widetilde{\alpha}(Z)>k+r\), where \(\widetilde{\alpha}(Z)\) is the minimal exponent of \(Z\). We also characterize this condition in terms of the Hodge filtration on the intersection complex Hodge module of \(Z\). Furthermore, we show that if \(Z\) has \(k\)-rational singularities, then the Hodge filtration on the local cohomology sheaf \(\mathcal{H}^r_Z(\mathcal{O}_X)\) is generated at level \(\dim (X)-\lceil\widetilde{\alpha}(Z)\rceil-1\) and, assuming that \(k\geq 1\) and \(Z\) is singular, of dimension \(d\), that \(\mathcal{H}^k(\underline{\Omega}_Z^{d-k})\ne 0\). All these results have been known for hypersurfaces in smooth varieties.

MSC:

14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14B05 Singularities in algebraic geometry
14J17 Singularities of surfaces or higher-dimensional varieties
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)

References:

[1] Brylinski, J.-L.; Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 64, 387-410, 1981 · Zbl 0473.22009 · doi:10.1007/BF01389272
[2] Budur, N.; Mustaţă, M.; Saito, M., Bernstein-Sato polynomials of arbitrary varieties, Compositio Math., 142, 3, 779-797, 2006 · Zbl 1112.32014 · doi:10.1112/S0010437X06002193
[3] Chen, Q.; Dirks, B., On \(V\)-filtration, Hodge filtration and Fourier transform, Selecta Math. (N.S.), 29, 4, 76 p. pp., 2023 · Zbl 1523.14038
[4] Chen, Q.; Dirks, B.; Mustaţă, M., The minimal exponent of cones over smooth complete intersection projective varieties, 2024
[5] Chen, Q.; Dirks, B.; Mustaţă, M.; Olano, S., \(V\)-filtrations and minimal exponents for local complete intersections, J. Reine Angew. Math., 811, 219-256, 2024 · Zbl 07856540
[6] Du Bois, P., Complexe de de Rham filtré d’une variété singulière, Bull. Soc. math. France, 109, 1, 41-81, 1981 · Zbl 0465.14009 · doi:10.24033/bsmf.1932
[7] Eisenbud, D., Commutative algebra. With a view toward algebraic geometry, 150, 1995, Springer-Verlag: Springer-Verlag, New York · Zbl 0819.13001
[8] Friedman, R.; Laza, R., Deformations of singular Fano and Calabi-Yau varieties, 2022
[9] Friedman, R.; Laza, R., Higher Du Bois and higher rational singularities, 2022
[10] Friedman, Robert; Laza, Radu, The higher Du Bois and higher rational properties for isolated singularities, J. Algebraic Geom., 33, 3, 493-520, 2024 · Zbl 07827477 · doi:10.1090/jag/824
[11] Guillén, F.; Navarro Aznar, V.; Pascual-Gainza, P.; Puerta, F., Hyperrésolutions cubiques et descente cohomologique, 1335, 1988, Springer · Zbl 0638.00011 · doi:10.1007/BFb0085054
[12] Hotta, R.; Takeuchi, K.; Tanisaki, T., D-modules, perverse sheaves, and representation theory, 2008, Birkhäuser: Birkhäuser, Boston · Zbl 1136.14009 · doi:10.1007/978-0-8176-4523-6
[13] Jung, S.-J.; Kim, I.-K.; Saito, M.; Yoon, Y., Higher Du Bois singularities of hypersurfaces, Proc. London Math. Soc. (3), 125, 3, 543-567, 2022 · Zbl 1539.14008 · doi:10.1112/plms.12464
[14] Kashiwara, M., Algebraic geometry (Tokyo/Kyoto, 1982), 1016, Vanishing cycle sheaves and holonomic systems of differential equations, 134-142, 1983, Springer: Springer, Berlin · Zbl 0566.32022 · doi:10.1007/BFb0099962
[15] Malgrange, B., Analyse et topologie sur les espaces singuliers (Luminy, 1981), 101, Polynômes de Bernstein-Sato et cohomologie évanescente, 243-267, 1983, Société Mathématique de France: Société Mathématique de France, Paris · Zbl 0528.32007
[16] Mustaţă, M.; Olano, S.; Popa, M.; Witaszek, J., The Du Bois complex of a hypersurface and the minimal exponent, Duke Math. J., 172, 7, 1411-1436, 2023 · Zbl 1518.14029 · doi:10.1215/00127094-2022-0074
[17] Mustaţă, M.; Popa, M., Hodge filtration, minimal exponent, and local vanishing, Invent. Math., 220, 2, 453-478, 2020 · Zbl 1446.14009 · doi:10.1007/s00222-019-00933-x
[18] Mustaţă, M.; Popa, M., Hodge ideals for \(\mathbf{Q} \)-divisors, \(V\)-filtration, and minimal exponent, Forum Math. Sigma, 8, 41 p. pp., 2020 · Zbl 1451.14055 · doi:10.1017/fms.2020.18
[19] Mustaţă, M.; Popa, M., Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension, Forum Math. Pi, 10, 58 p. pp., 2022 · Zbl 1511.14010 · doi:10.1017/fmp.2022.15
[20] Mustaţă, M.; Popa, M., On \(k\)-rational and \(k\)-Du Bois local complete intersections, 2022
[21] Olano, S., Weighted Hodge ideals of reduced divisors, Forum Math. Sigma, 11, 28 p. pp., 2023 · Zbl 1523.14065 · doi:10.1017/fms.2023.48
[22] Peters, C.; Steenbrink, J., Mixed Hodge structures, 52, 2008, Springer-Verlag: Springer-Verlag, Berlin · Zbl 1138.14002
[23] Saito, M., Hodge filtrations on Gauss-Manin systems. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30, 3, 489-498, 1984 · Zbl 0549.32016
[24] Saito, M., Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., 24, 6, 849-995, 1988 · Zbl 0691.14007 · doi:10.2977/prims/1195173930
[25] Saito, M., Mixed Hodge modules, Publ. RIMS, Kyoto Univ., 26, 2, 221-333, 1990 · Zbl 0727.14004 · doi:10.2977/prims/1195171082
[26] Saito, M., On \(b\)-function, spectrum and rational singularity, Math. Ann., 295, 1, 51-74, 1993 · Zbl 0788.32025 · doi:10.1007/BF01444876
[27] Saito, M., On microlocal \(b\)-function, Bull. Soc. math. France, 122, 2, 163-184, 1994 · Zbl 0810.32004 · doi:10.24033/bsmf.2227
[28] Saito, M., Mixed Hodge complexes on algebraic varieties, Math. Ann., 316, 2, 283-331, 2000 · Zbl 0976.14011 · doi:10.1007/s002080050014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.