×

Higher du Bois singularities of hypersurfaces. (English) Zbl 1539.14008

Summary: For a complex algebraic variety \(X\), we introduce higher \(p\)-Du Bois singularity by imposing canonical isomorphisms between the sheaves of Kähler differential forms \(\Omega_X^q\) and the shifted graded pieces of the Du Bois complex \(\underline{\Omega}_X^q\) for \(q\leqslant p\). If \(X\) is a reduced hypersurface, we show that higher \(p\)-Du Bois singularity coincides with higher \(p\)-log canonical singularity, generalizing a well-known theorem for \(p=0\). The assertion that \(p\)-log canonicity implies \(p\)-Du Bois has been proved by Mustata, Olano, Popa, and Witaszek quite recently as a corollary of two theorems asserting that the sheaves of reflexive differential forms \(\Omega_X^{[q]} (q\leqslant p)\) coincide with \(\Omega_X^q\) and \(\underline{\Omega}_X^q\), respectively, and these are shown by calculating the depth of the latter two sheaves. We construct explicit isomorphisms between \(\Omega_X^q\) and \(\underline{\Omega}_X^q\) applying the acyclicity of a Koszul complex in a certain range. We also improve some non-vanishing assertion shown by them using mixed Hodge modules and the Tjurina subspectrum in the isolated singularity case. This is useful for instance to estimate the lower bound of the maximal root of the reduced Bernstein-Sato polynomial in the case where a quotient singularity is a hypersurface and its singular locus has codimension at most 4.
{© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.}

MSC:

14B05 Singularities in algebraic geometry
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14F17 Vanishing theorems in algebraic geometry
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)

References:

[1] A.Beilinson, J.Bernstein, and P.Deligne, Faisceaux pervers, Astérisque100, (1982), 1-171. · Zbl 0536.14011
[2] J.Briançon and H.Skoda, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de \({\mathbb{C}}^n\), C. R. Acad. Sci. Paris, Sér. A278 (1974), 949-951. · Zbl 0307.32007
[3] E.Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math.2 (1970), 103-161. · Zbl 0186.26101
[4] N.Budur, On Hodge spectrum and multiplier ideals, Math. Ann.327 (2003), 257-270. · Zbl 1035.14010
[5] P.Deligne, Théorie de Hodge III, Publ. Math. IHES44 (1974), 5-77. · Zbl 0237.14003
[6] A.Dimca, Ph.Maisonobe, M.Saito, and T.Torrelli, Multiplier ideals, \(V\)‐filtrations and transversal sections, Math. Ann.336 (2006), 901-924. · Zbl 1107.14003
[7] A.Dimca and M.Saito, Koszul complexes and spectra of projective hypersurfaces with isolated singularities, arXiv:1212.1081, 2012.
[8] A.Dimca and G.Sticlaru, Computing Milnor fiber monodromy for some projective hypersurfaces, Contemp. Math.742, Amer. Math. Soc. (2020), 31-52. · Zbl 1447.32044
[9] Ph.duBois, Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. France109 (1981), 41-81. · Zbl 0465.14009
[10] D.Eisenbud, The Geometry of Syzygies, A Second Course in Commutative Algebra and Algebraic Geometry, Springer, New York, 2005. · Zbl 1066.14001
[11] J.Fernández de Bobadilla, I.Pallarés, and M.Saito, Hodge modules and cobordism classes, arxiv:2103.04836, 2021.
[12] L.Fiorot, On derived categories of differential complexes, J. Algebra.312 (2007), 362-376. · Zbl 1122.18006
[13] R.Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. · Zbl 0080.16201
[14] H.Grauert and H.Kerner, Deformationen von Singularitäten komplexer Räume, Math. Ann.153 (1964), 236-260. · Zbl 0118.30401
[15] H.Grauert and O.Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Inv. Math.11 (1970), 263-292. · Zbl 0202.07602
[16] A.Grothendieck, Eléments de géométrie algébrique I, Publ. Math. IHES4 (1960), 5-228. · Zbl 0118.36206
[17] F.Guillén, V.Navarro Aznar, P.Pascual‐Gainza, and F.Puerta, Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics 1335, Springer, Berlin, 1988, xii+192 pp. · Zbl 0638.00011
[18] R.Hartshorne, Residues and duality, Lecture Notes in Mathematics 20, Springer, Berlin, 1966, vii+423 pp. · Zbl 0212.26101
[19] R.Hartshorne, Algebraic Geometry, Springer, New York, 1977. · Zbl 0367.14001
[20] S.‐J.Jung, I.‐K.Kim, M.Saito, and Y.Yoon, Hodge ideals and spectrum of isolated hypersurface singularities, arXiv:1904.02453, to appear in Ann. Inst. Fourier.
[21] S.‐J.Jung, I.‐K.Kim, M.Saito, and Y.Yoon, Briançon‐Skoda exponents and the maximal root of reduced Bernstein‐Sato polynomials, arXiv:2108.07231, 2021.
[22] M.Kashiwara, \(B\)‐functions and holonomic systems, Inv. Math.38 (1976/77), 33-53. · Zbl 0354.35082
[23] M.Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Lecture Notes in Mathematics 1016, Springer, Berlin, 1983, pp. 134-142. · Zbl 0566.32022
[24] S.Kebekus, Pull‐back morphisms for reflexive differential forms, Adv. Math.245 (2013), 78-112. · Zbl 1427.14072
[25] S. J.Kovács and K.Schwede, Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of Stratified Spaces, Math. Sci. Res. Inst. Publ.58 (2011), 51-94. · Zbl 1248.14019
[26] B.Malgrange, Le polynôme de Bernstein d’une singularité isolée, Lecture Notes in Mathematics 459, Springer, Berlin, 1975, pp. 98-119. · Zbl 0308.32007
[27] B.Malgrange, Polynôme de Bernstein‐Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque101-102 (1983), 243-267. · Zbl 0528.32007
[28] H.Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1989. · Zbl 0666.13002
[29] M.Michałek, Notes on Kebekus’ lectures on differential forms on singular spaces Contrib, Algebr. Geom. (2012), 375-388. · Zbl 1260.14020
[30] J.Milnor, Singular points of complex hypersurfaces, Ann. Math. Stud. 61, Princeton University Press, NJ, 1968, iii+122 pp. · Zbl 0184.48405
[31] M.Mustaţă, S.Olano, M.Popa, and J.Witaszek, The Du Bois complex of a hypersurface and the minimal exponent, arXiv:2105.01245, 2021.
[32] M.Mustaţă and M.Popa, Hodge ideals, Mem. Amer. Math. Soc.262 (2019), no. 1268, v+80. · Zbl 1442.14004
[33] T.Reichelt, M.Saito, and U.Walther, Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings, Selecta Math. (N.S.)27 (2021), no. 6, 22. · Zbl 1455.13030
[34] H. J.Reiffen, Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen, Math. Zeit.101 (1967), 269-284. · Zbl 0164.09401
[35] M.Saito, Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ.24 (1988), 849-995. · Zbl 0691.14007
[36] M.Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier39 (1989), 27-72. · Zbl 0644.32005
[37] M.Saito, Induced \({\mathcal{D}} \)‐modules and differential complexes, Bull. Soc. Math. France117 (1989), 361-387. · Zbl 0705.32005
[38] M.Saito, Mixed Hodge modules, Publ. RIMS, Kyoto Univ.26 (1990), 221-333. · Zbl 0727.14004
[39] M.Saito, On Kollár’s conjecture, in Several complex variables and complex geometry, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, pp. 509-517. · Zbl 0776.14001
[40] M.Saito, On \(b\)‐function, spectrum and rational singularity, Math. Ann.295 (1993), 51-74. · Zbl 0788.32025
[41] M.Saito, On microlocal \(b\)‐function, Bull. Soc. Math. France122 (1994), 163-184. · Zbl 0810.32004
[42] M.Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann.316 (2000), 283-331. · Zbl 0976.14011
[43] M.Saito, On the Hodge filtration of Hodge modules, Moscow Math. J.9 (2009), 161-191. · Zbl 1196.14015
[44] M.Saito, Bernstein‐Sato polynomials for projective hypersurfaces with weighted homogeneous isolated singularities, arXiv:1609.04801, 2016.
[45] M.Saito, Hodge ideals and microlocal \(V\)‐filtration, arXiv:1612.08667, 2016.
[46] M.Saito, A young person’s guide to mixed Hodge modules, in Hodge theory and \(L^2\)‐analysis, Adv. Lect. Math.39, (2017), 517-553 (arxiv:1605.00435). · Zbl 1379.14001
[47] M.Saito, On the structure of Brieskorn lattices II, J. Singularities18 (2018), 248-271. · Zbl 1405.32040
[48] M.Saito, Roots of Bernstein‐Sato polynomials of certain homogeneous polynomials with two‐dimensional singular loci, Pure Appl. Math. Q.16 (2020), 1219-1280 (arxiv:1703.05741). · Zbl 1457.14043
[49] J.Scherk and J. H. M.Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann.271 (1985), 641-665. · Zbl 0618.14002
[50] J.‐P.Serre, Faisceaux algébriques cohérents, Ann. Math. (2)61 (1955), 197-278. · Zbl 0067.16201
[51] J. H. M.Steenbrink, Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (edited by P. Holm (ed.)), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563. · Zbl 0373.14007
[52] J. H. M.Steenbrink, Semicontinuity of the singularity spectrum, Inv. Math.79 (1985), 557-565. · Zbl 0568.14021
[53] A. N.Varchenko, Asymptotic mixed Hodge structure in vanishing cohomologies, Izv. Akad. Nauk SSSR Ser. Mat.45 (1981), 540-591. · Zbl 0476.14002
[54] A. N.Varchenko, The complex singularity index does not change along the stratum \(\mu =\) const, Funk. Anal. Pril.16 (1982), 1-12. · Zbl 0498.32010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.