×

Quantum current and holographic categorical symmetry. (English) Zbl 07908920

Summary: We establish the formulation for quantum current. Given a symmetry group \(G\), let \(\mathcal{C} := \operatorname{Rep} G\) be its representation category. Physically, symmetry charges are objects of \(\mathcal{C}\) and symmetric operators are morphisms in \(\mathcal{C}\). The addition of charges is given by the tensor product of representations. For any symmetric operator \(O\) crossing two subsystems, the exact symmetry charge transported by \(O\) can be extracted. The quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance. A quantum current exactly corresponds to an object in the Drinfeld center \(Z_1(\mathcal{C})\). The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension. To express the local conservation, the internal hom must be used to compute the charge difference, and the framework of enriched category is inevitable. To illustrate these ideas, we develop a rigorous scheme of renormalization in one-dimensional lattice systems and analyse the fixed-point models. It is proved that in the fixed-point models, superconducting quantum currents form a Lagrangian algebra in \(Z_1(\mathcal{C})\) and the boundary-bulk correspondence is verified in the enriched setting. Overall, the quantum current provides a natural physical interpretation to the holographic categorical symmetry.

MSC:

81Txx Quantum field theory; related classical field theories
18Dxx Categorical structures
82Dxx Applications of statistical mechanics to specific types of physical systems

References:

[1] A. Kapustin and N. Sopenko, Local Noether theorem for quantum lattice systems and topological invariants of gapped states, J. Math. Phys. 63, 091903 (2022), doi:10.1063/5.0085964. · Zbl 1509.81488 · doi:10.1063/5.0085964
[2] N. A. Sopenko, Topological invariants of gapped quantum lattice systems, PhD thesis, Cal-ifornia Institute of Technology, Pasadena, USA (2023).
[3] W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020), doi:10.1103/PhysRevResearch.2.033417. · doi:10.1103/PhysRevResearch.2.033417
[4] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang and H. Zheng, Algebraic higher symmetry and categorical symmetry: A holographic and entanglement view of symmetry, Phys. Rev. Res. 2, 043086 (2020), doi:10.1103/physrevresearch.2.043086. · doi:10.1103/physrevresearch.2.043086
[5] L. Kong, X.-G. Wen and H. Zheng, One dimensional gapped quantum phases and enriched fusion categories, J. High Energy Phys. 03, 022 (2022), doi:10.1007/jhep03(2022)022. · Zbl 1522.81559 · doi:10.1007/jhep03(2022)022
[6] A. Chatterjee and X.-G. Wen, Symmetry as a shadow of topological order and a derivation of topological holographic principle, Phys. Rev. B 107, 155136 (2023), doi:10.1103/PhysRevB.107.155136. · doi:10.1103/PhysRevB.107.155136
[7] A. Chatterjee and X.-G. Wen, Holographic theory for the emergence and the symmetry protection of gaplessness and for continuous phase transitions, Phys. Rev. B 108, 075105 (2022), doi:10.1103/PhysRevB.108.075105. · doi:10.1103/PhysRevB.108.075105
[8] R. Xu and Z.-H. Zhang, Categorical descriptions of 1-dimensional gapped phases with Abelian onsite symmetries, (arXiv preprint) doi:10.48550/arXiv.2205.09656. · doi:10.48550/arXiv.2205.09656
[9] H. Moradi, S. F. Moosavian and A. Tiwari, Topological holography: Towards a uni-fication of Landau and beyond-Landau physics, SciPost Phys. Core 6, 066 (2023), doi:10.21468/SciPostPhysCore.6.4.066. · doi:10.21468/SciPostPhysCore.6.4.066
[10] C. Delcamp and A. Tiwari, Higher categorical symmetries and gauging in two-dimensional spin systems, (arXiv preprint) doi:10.48550/arXiv.2301.01259. · doi:10.48550/arXiv.2301.01259
[11] L. Kong and H. Zheng, Gapless edges of 2d topological orders and enriched monoidal cate-gories, Nucl. Phys. B 927, 140 (2018), doi:10.1016/j.nuclphysb.2017.12.007. · Zbl 1380.81335 · doi:10.1016/j.nuclphysb.2017.12.007
[12] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang and H. Zheng, Classification of topological phases with finite internal symmetries in all dimensions, J. High Energy Phys. 09, 093 (2020), doi:10.1007/JHEP09(2020)093. · Zbl 1454.83138 · doi:10.1007/JHEP09(2020)093
[13] L. Kong and H. Zheng, Categories of quantum liquids I, J. High Energy Phys. 08, 070 (2022), doi:10.1007/jhep08(2022)070. · Zbl 1522.81560 · doi:10.1007/jhep08(2022)070
[14] L. Kong and H. Zheng, Categories of quantum liquids II, (arXiv preprint) doi:10.48550/arXiv.2107.03858. · doi:10.48550/arXiv.2107.03858
[15] L. Kong and H. Zheng, Categories of quantum liquids III, (arXiv preprint) doi:10.48550/arXiv.2201.05726. · doi:10.48550/arXiv.2201.05726
[16] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/S0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[17] L. Kong and X.-G. Wen, Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions, (arXiv preprint) doi:10.48550/arXiv.1405.5858. · doi:10.48550/arXiv.1405.5858
[18] L. Kong, X.-G. Wen and H. Zheng, Boundary-bulk relation for topological or-ders as the functor mapping higher categories to their centers, (arXiv preprint) doi:10.48550/arXiv.1502.01690. · doi:10.48550/arXiv.1502.01690
[19] L. Kong, X.-G. Wen and H. Zheng, Boundary-bulk relation in topological orders, Nucl. Phys. B 922, 62 (2017), doi:10.1016/j.nuclphysb.2017.06.023. · Zbl 1373.82093 · doi:10.1016/j.nuclphysb.2017.06.023
[20] R. Thorngren and Y. Wang, Fusion category symmetry I: Anomaly in-flow and gapped phases, (arXiv preprint) doi:10.48550/arXiv.1912.02817. · Zbl 07865702 · doi:10.48550/arXiv.1912.02817
[21] L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, J. High Energy Phys. 03, 189 (2018), doi:10.1007/jhep03(2018)189. · Zbl 1388.81707 · doi:10.1007/jhep03(2018)189
[22] A. Davydov, L. Kong and I. Runkel, Field theories with defects and the centre func-tor, in Mathematical foundations of quantum field theory and perturbative string the-ory, American Mathematical Society, Providence, USA, ISBN 9780821851951 (2011), doi:10.1090/pspum/083. · Zbl 1272.57023 · doi:10.1090/pspum/083
[23] K. Inamura, On lattice models of gapped phases with fusion category symmetries, J. High Energy Phys. 03, 036 (2022), doi:10.1007/jhep03(2022)036. · Zbl 1522.81293 · doi:10.1007/jhep03(2022)036
[24] F. Apruzzi, F. Bonetti, I. García Etxebarria, S. S. Hosseini and S. Schäfer-Nameki, Symme-try TFTs from string theory, Commun. Math. Phys. 402, 895 (2023), doi:10.1007/s00220-023-04737-2. · Zbl 1529.81100 · doi:10.1007/s00220-023-04737-2
[25] D. S. Freed, G. W. Moore and C. Teleman, Topological symmetry in quantum field theory, (arXiv preprint) doi:10.48550/arXiv.2209.07471. · doi:10.48550/arXiv.2209.07471
[26] S. Morrison and D. Penneys, Monoidal categories enriched in braided monoidal categories, Int. Math. Res. Not. 11, 3527 (2019), doi:10.1093/imrn/rnx217. · Zbl 1430.18008 · doi:10.1093/imrn/rnx217
[27] L. Kong, W. Yuan, Z.-H. Zhang and H. Zheng, Enriched monoidal categories I: Centers, (arXiv preprint) doi:10.48550/arXiv.2104.03121. · doi:10.48550/arXiv.2104.03121
[28] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, American Mathematical Society, Providence, USA, ISBN 9781470420246 (2015), doi:10.1090/surv/205. · Zbl 1365.18001 · doi:10.1090/surv/205
[29] M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005), doi:10.1103/PhysRevB.71.045110. · doi:10.1103/PhysRevB.71.045110
[30] A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012), doi:10.1007/s00220-012-1500-5. · Zbl 1250.81141 · doi:10.1007/s00220-012-1500-5
[31] T. Lan and X.-G. Wen, Topological quasiparticles and the holographic bulk-edge re-lation in (2 + 1)-dimensional string-net models, Phys. Rev. B 90, 115119 (2014), doi:10.1103/PhysRevB.90.115119. · doi:10.1103/PhysRevB.90.115119
[32] L. Kong and H. Zheng, Drinfeld center of enriched monoidal categories, Adv. Math. 323, 411 (2018), doi:10.1016/j.aim.2017.10.038. · Zbl 1387.18018 · doi:10.1016/j.aim.2017.10.038
[33] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8, 177 (2003), doi:10.1007/s00031-003-0515-6. · Zbl 1044.18004 · doi:10.1007/s00031-003-0515-6
[34] L. Lootens, C. Delcamp, G. Ortiz and F. Verstraete, Dualities in one-dimensional quantum models: Hamiltonians and matrix product operator intertwiners, PRX Quantum 4, 020357 (2023), doi:10.1103/PRXQuantum.4.020357. · doi:10.1103/PRXQuantum.4.020357
[35] A. Davydov, M. Müger, D. Nikshych and V. Ostrik, The group of non-degenerate braided fusion categories, J. Reine Angew. Math. 135 (2013), doi:10.1515/crelle.2012.014. · Zbl 1271.18008 · doi:10.1515/crelle.2012.014
[36] A. Davydov, Centre of an algebra, Adv. Math. 225, 319 (2010), doi:10.1016/j.aim.2010.02.018. · Zbl 1227.18003 · doi:10.1016/j.aim.2010.02.018
[37] P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1, 209 (2010), doi:10.4171/QT/6. · Zbl 1214.18007 · doi:10.4171/QT/6
[38] X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011), doi:10.1103/physrevb.83.035107. · doi:10.1103/physrevb.83.035107
[39] N. Schuch, D. Pérez-García and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011), doi:10.1103/physrevb.84.165139. · doi:10.1103/physrevb.84.165139
[40] X. Chen, Z.-C. Gu and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev. B 84, 235128 (2011), doi:10.1103/PhysRevB.84.235128. · doi:10.1103/PhysRevB.84.235128
[41] D. Gaiotto and T. Johnson-Freyd, Condensations in higher categories, (arXiv preprint) doi:10.48550/arXiv.1905.09566. · doi:10.48550/arXiv.1905.09566
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.