×

Positive solutions for a Hadamard-type fractional \(p\)-Laplacian integral boundary value problem. (English) Zbl 07908534

In this work the authors considered the existence of positive solutions to a Hadamard-type fractional integral boundary value problem using the fixed point index method and multiplicity of solutions using Leggit-Williams fixed point theorem.
The authors expressed the solution of the boundary value problem as a Hammerstein integral equation (Lemma 1, Lemma 2) while properties of the kernel of the integral equation also known as the green’s function relevant to the study were obtained (Lemma 3). The authors defined a cone \(P\) and operators \(T\) and \(L^*_{\mu, \nu}\), where \(\mu, \ \nu\) are two positive constants. The spectral radius of \(L^*_{\mu, \nu}\) is found to be greater than 0 (Lemma 4).
The authors stated six initial hypothesis for this work (H1)–(H6). The fixed point index theory is used in Theorem 1 and 3 to prove existence of at least one positive solution. hypothesis (H1)–(H4) are used in Theorem 1 while Theorem 2 uses (H1)–(H2) and (H5)–(H6). Both theorems shows the operators are self map and completely continuous.
The Leggett-Williams fixed point theorem is used to prove multiplicity of solutions in Theorem 3. The authors stated an additional three hypothesis (H7)–(H9) which were used in Theorem 3 to prove existence of at least three positive solution. The work concludes with an example to demonstrate the results obtained.

MSC:

34A08 Fractional ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47H11 Degree theory for nonlinear operators
Full Text: DOI

References:

[1] M.I. Abbas, Existence and uniqueness results for Riemann-Stieltjes integral boundary value problems of nonlinear implicit Hadamard fractional differential equations, Asian-Eur. J. Math., 15(8):2250155, 2022, https://doi.org/10.1142/S1793557122501558. · Zbl 1504.34004 · doi:10.1142/S1793557122501558
[2] M.I. Abbas, M. Fečkan, Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition, Math. Slovaca, 72(4):925-934, 2022, https://doi.org/10.1515/ms-2022-0063. · Zbl 1537.34002 · doi:10.1515/ms-2022-0063
[3] B. Ahmad, M. Alghanmi, S.K. Ntouyas, A. Alsaedi, Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions, Appl. Math. Lett., 84:111-117, 2018, https://doi.org/10.1016/j.aml.2018.04.024. · Zbl 1477.34004 · doi:10.1016/j.aml.2018.04.024
[4] C. Ciftci, F.Y. Deren, Analysis of p-Laplacian Hadamard fractional boundary value problems with the derivative term involved in the nonlinear term, Math. Methods Appl. Sci., 46(8):8945-8955, 2023, https://doi.org/10.1002/mma.9028. · Zbl 1527.34013 · doi:10.1002/mma.9028
[5] F.Y. Deren, T.S. Cerdik, Extremal positive solutions for Hadamard fractional differential systems on an infinite interval, Mediterr. J. Math., 20(3):158, 2023, https://doi.org/ 10.1007/s00009-023-02369-3. · Zbl 1510.34009 · doi:10.1007/s00009-023-02369-3
[6] Y. Ding, J. Jiang, D. O’Regan, J. Xu, Positive solutions for a system of Hadamard-type fractional differential equations with semipositone nonlinearities, Complexity, 2020:9742418, 2020, https://doi.org/10.1155/2020/9742418. · Zbl 1432.34010 · doi:10.1155/2020/9742418
[7] Y. Ding, D. O’Regan, Positive solutions for a second-order p-Laplacian impulsive boundary value problem, Adv. Difference Equ., 2012:159, 2012, https://doi.org/10.1186/ 1687-1847-2012-159. · Zbl 1377.34030 · doi:10.1186/1687-1847-2012-159
[8] M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., 2007:10368, 2007, https://doi.org/10. 1155/2007/10368. · Zbl 1149.26012 · doi:10.1155/2007/10368
[9] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes Rep. Math. Sci. Eng., Vol. 5, Academic Press, Boston, MA, 1988, https://doi.org/https://doi. org/10.1016/C2013-0-10750-7. · Zbl 0661.47045 · doi:10.1016/C2013-0-10750-7
[10] F. Haddouchi, Positive solutions of nonlocal fractional boundary value problem involving Riemann-Stieltjes integral condition, J. Appl. Math. Comput., 64(1-2):487-502, 2020, https://doi.org/10.1007/s12190-020-01365-0. · Zbl 1475.34004 · doi:10.1007/s12190-020-01365-0
[11] J. He, X. Zhang, L. Liu, Y. Wu, Y. Cui, Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions, Bound. Value Probl., 2018:189, 2018, https://doi.org/10.1186/s13661-018-1109-5. · Zbl 1499.34052 · doi:10.1186/s13661-018-1109-5
[12] J. He, X. Zhang, L. Liu, Y. Wu, Y. Cui, A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties, Bound. Value Probl., 2019:112, 2019, https://doi.org/10.1186/s13661-019-1228-7. · Zbl 1513.34024 · doi:10.1186/s13661-019-1228-7
[13] J. Jiang, D. O’Regan, J. Xu, Y. Cui, Positive solutions for a Hadamard fractional p-Laplacian three-point boundary value problem, Mathematics, 7(5):439, 2019, https://doi.org/ 10.3390/math7050439. · doi:10.3390/math7050439
[14] J. Jiang, D. O’Regan, J. Xu, Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019:204, 2019, https://doi.org/10.1186/s13660-019-2156-x. · Zbl 1499.34182 · doi:10.1186/s13660-019-2156-x
[15] M. Khuddush, K.R. Prasad, Infinitely many positive solutions for an iterative system of conformable fractional order dynamic boundary value problems on time scales, Turk. J. Math., 46(2):338-359, 2022, https://doi.org/10.3906/mat-2103-117. · Zbl 1495.34125 · doi:10.3906/mat-2103-117
[16] M. Khuddush, K. Rajendra Prasad, P. Veeraiah, Infinitely many positive solutions for an iterative system of fractional BVPs with multistrip Riemann-Stieltjes integral boundary conditions, Afr. Mat., 33(4):91, 2022, https://doi.org/10.1007/s13370-022-01026-4. · Zbl 1524.34019 · doi:10.1007/s13370-022-01026-4
[17] M.G. Kreȋn, M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Am. Math. Soc. Transl., 26(26):128, 1950.
[18] B.M.B. Krushna, V.V.R.R.B. Raju, K.R. Prasad, M.A. Srinivas, Solvability for iterative systems of Hadamard fractional boundary value problems, Fract. Differ. Calc., 13(1):117-132, 2023, https://doi.org/10.7153/fdc-2023-13-06. · Zbl 07818966 · doi:10.7153/fdc-2023-13-06
[19] R.W. Leggett, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28(4):673-688, 1979, https://doi.org/10. 1512/iumj.1979.28.28046. · Zbl 0421.47033 · doi:10.1512/iumj.1979.28.28046
[20] L. Liu, D. Min, Y. Wu, Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann-Stieltjes integral boundary value conditions, Adv. Difference Equ., 2020:442, 2020, https://doi.org/ 10.1186/s13662-020-02892-7. · Zbl 1486.34029 · doi:10.1186/s13662-020-02892-7
[21] C. Nuchpong, S.K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions, Adv. Difference Equ., 2021:268, 2021, https://doi. org/10.1186/s13662-021-03424-7. · Zbl 1494.34047 · doi:10.1186/s13662-021-03424-7
[22] N. Nyamoradi, B. Ahmad, Generalized fractional differential systems with Stieltjes boundary conditions, Qual. Theory Dyn. Syst., 22(1):6, 2023, https://doi.org/10.1007/ s12346-022-00703-w. · Zbl 1514.34022 · doi:10.1007/s12346-022-00703-w
[23] S. Padhi, J.R. Graef, S. Pati, Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions, Fract. Calc. Appl. Anal., 21(3):716-745, 2018, https://doi.org/10.1515/fca-2018-0038. · Zbl 1406.34015 · doi:10.1515/fca-2018-0038
[24] T. Ren, S. Li, X. Zhang, L. Liu, Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes, Bound. Value Probl., 2017:118, 2017, https://doi.org/10.1186/s13661-017-0849-y. · Zbl 1376.35083 · doi:10.1186/s13661-017-0849-y
[25] W. Wang, J. Ye, J. Xu, D. O’Regan, Positive solutions for a high-order Riemann-Liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 14(11):2320, 2022, https://doi.org/10.3390/sym14112320. · doi:10.3390/sym14112320
[26] Y. Wang, L. Liu, X. Zhang, Y. Wu, Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Appl. Math. Comput., 258:312-324, 2015, https://doi.org/10.1016/j.amc.2015.01.080. · Zbl 1338.92143 · doi:10.1016/j.amc.2015.01.080
[27] Y. Wang, Y. Yang, Positive solutions for a high-order semipositone fractional differential equation with integral boundary conditions, J. Appl. Math. Comput., 45(1-2):99-109, 2014, https://doi.org/10.1007/s12190-013-0713-x. · Zbl 1296.34040 · doi:10.1007/s12190-013-0713-x
[28] J. Wu, X. Zhang, L. Liu, Y. Wu, Y. Cui, Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation, Math. Model. Anal., 23(4): 611-626, 2018, https://doi.org/10.3846/mma.2018.037. https://www.journals.vu.lt/nonlinear-analysis · Zbl 1488.34068 · doi:10.3846/mma.2018.037
[29] J. Xu, J. Liu, D. O’Regan, Solvability for a Hadamard-type fractional integral boundary value problem, Nonlinear Anal. Model. Control, 28(4):672-696, 2023, https://doi.org/10. 15388/namc.2023.28.32130. · Zbl 1534.34014 · doi:10.15388/namc.2023.28.32130
[30] J. Xu, L. Liu, S. Bai, Y. Wu, Solvability for a system of Hadamard fractional multi-point boundary value problems, Nonlinear Anal. Model. Control, 26(3):502-521, 2021, https: //doi.org/10.15388/namc.2021.26.22538. · Zbl 1470.34033 · doi:10.15388/namc.2021.26.22538
[31] W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8(2):110-129, 2015, https://doi.org/10.22436/jnsa.008.02.04. · Zbl 1319.34019 · doi:10.22436/jnsa.008.02.04
[32] W. Yang, Eigenvalue problems for a class of nonlinear Hadamard fractional differential equations with p-Laplacian operator, Math. Slovaca, 70(1):107-124, 2020, https://doi. org/10.1515/ms-2017-0336. · Zbl 1505.34043 · doi:10.1515/ms-2017-0336
[33] C. Zhai, Y. Ma, H. Li, Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral, AIMS Math., 5(5):4754-4769, 2020, https://doi.org/10.3934/math.2020304. · Zbl 1484.34049 · doi:10.3934/math.2020304
[34] X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Appl. Math. Comput., 235:412-422, 2014, https://doi.org/10.1016/j. amc.2014.02.062. · Zbl 1334.34060 · doi:10.1016/j.amc.2014.02.062
[35] X. Zhang, L. Liu, Y. Wu, Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017:3976469, 2017, https://doi.org/ 10.1155/2017/3976469. · Zbl 1377.34018 · doi:10.1155/2017/3976469
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.