×

A local continuum model of cell-cell adhesion. (English) Zbl 07906241

Summary: Cell-cell adhesion is one the most fundamental mechanisms regulating collective cell migration during tissue development, homeostasis, and repair, allowing cell populations to self-organize and eventually form and maintain complex tissue shapes. Cells interact with each other via the formation of protrusions or filopodia and they adhere to other cells through binding of cell surface proteins. The resulting adhesive forces are then related to cell size and shape and, often, continuum models represent them by nonlocal attractive interactions. In this paper, we present a new continuum model of cell-cell adhesion which can be derived from a general nonlocal model in the limit of short-range interactions. This new model is local, resembling a system of thin-film type equations, with the various model parameters playing the role of surface tensions between different cell populations. Numerical simulations in one and two dimensions reveal that the local model maintains the diversity of cell sorting patterns observed both in experiments and in previously used nonlocal models. In addition, it also has the advantage of having explicit stationary solutions, which provides a direct link between the model parameters and the differential adhesion hypothesis.

MSC:

92C37 Cell biology
92C15 Developmental biology, pattern formation
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B36 Pattern formations in context of PDEs
35G20 Nonlinear higher-order PDEs

Software:

SageMath

References:

[1] Alert, R. and Trepat, X., Physical models of collective cell migration, Ann. Rev. Conden. Matter Phys., 11 (2020), p. 77-101.
[2] Alt, S., Ganguly, P., and Salbreux, G., Vertex models: From cell mechanics to tissue morphogenesis, Philo. Trans. Roy. Soc. B: Biol. Sci., 372 (2017), 20150520.
[3] Amack, J. D. and Manning, M. L., Knowing the boundaries: Extending the differential adhesion hypothesis in embryonic cell sorting, Science, 338 (2012), pp. 212-215.
[4] Anguige, K. and Schmeiser, C., A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J. Math. Biol., 58 (2008), pp. 07-427. · Zbl 1162.92009
[5] Armstrong, N. J., Painter, K. J., and Sherratt, J. A., A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), pp. 98-113. · Zbl 1447.92113
[6] Bailo, R., Carrillo, J., Murakawa, H., and Schmidtchen, M., Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations, Math. Models Methods Appl. Sci., 30 (2020), pp. 2487-2522. · Zbl 1460.65160
[7] Bailo, R., Carrillo, J. A., Kalliadasis, S., and Perez, S. P., Unconditional Bound-Preserving and Energy-Dissipating Finite-Volume Schemes for the Cahn-Hilliard Equation, preprint, https://arxiv.org/abs/2105.05351, 2021.
[8] Baker, R. E. and Simpson, M. J., Models of collective cell motion for cell populations with different aspect ratio: Diffusion, proliferation and travelling waves, Phys. A: Stat. Mech. Appl., 391 (2012), pp. 3729-3750.
[9] Barrett, J. W., Blowey, J. F., and Garcke, H., On fully practical finite element approximations of degenerate Cahn-Hilliard systems, ESAIM: Math. Model. Numer. Anal., 35 (2001), pp. 713-748. · Zbl 0987.35071
[10] Bernoff, A. and Topaz, C., Biological aggregation driven by social and environmental factors: A nonlocal model and its degenerate Cahn-Hilliard approximation, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1528-1562, doi:10.1137/15M1031151. · Zbl 1351.35228
[11] Bertozzi, A. L. and Pugh, M., The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49 (1996), pp. 85-123. · Zbl 0863.76017
[12] Bertozzi, A. L. and Pugh, M. C., Long-wave instabilities and saturation in thin film equations, Commun. Pure Appl. Math., 51 (1998), pp. 625-661. · Zbl 0916.35008
[13] Brodland, G., The differential interfacial tension hypothesis (DITH): A comprehensive theory for the self-rearrangement of embryonic cells and tissues, J. Biomech. Eng., 124 (2002), pp. 188-197.
[14] Burger, M., Francesco, M., and Franek, M., Stationary states of quadratic diffusion equations with long-range attraction, Commun. Math. Sci., 11 (2013), pp. 709-738. · Zbl 1282.35203
[15] Calvez, V. and Carrillo, J. A., Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), pp. 155-175. · Zbl 1116.35057
[16] Carrillo, J., Chertock, A., and Huang, Y., A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), pp. 233-258. · Zbl 1388.65077
[17] Carrillo, J., Murakawa, H., Sato, M., Togashi, H., and Trush, O., A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol., 474 (2019), pp. 14-24. · Zbl 1414.92133
[18] Carrillo, J. A., Colombi, A., and Scianna, M., Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles, J. Theoret. Biol., 445 (2018), pp. 75-91. · Zbl 1397.92092
[19] Carrillo, J. A., Huang, Y., and Schmidtchen, M., Zoology of a nonlocal cross-diffusion model for two species, SIAM J. Appl. Math., 78 (2018), pp. 1078-1104, doi:10.1137/17M1128782. · Zbl 1392.35179
[20] Carrillo, J. A., McCann, R. J., and Villani, C., Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 19 (2003), pp. 971-1018. · Zbl 1073.35127
[21] Celora, G. L., Hennessy, M. G., Münch, A., Wagner, B., and Waters, S. L., The Dynamics of a Collapsing Polyelectrolyte Gel, preprint, https://arxiv.org/abs/2105.06495, 2021.
[22] Chen, L., Painter, K., Surulescu, C., and Zhigun, A., Mathematical models for cell migration: A non-local perspective, Philos. Trans. Roy. Soc. B, 375 (2020), 20190379.
[23] Delgadino, M. G., Convergence of a one-dimensional Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 50 (2018), pp. 4457-4482, doi:10.1137/15M1045429. · Zbl 1395.35108
[24] Di Francesco, M. and Fagioli, S., Measure solutions for non-local interaction PDEs with two species, Nonlinearity, 26 (2013), 2777. · Zbl 1278.35003
[25] Duguay, D., Foty, R. A., and Steinberg, M. S., Cadherin-mediated cell adhesion and tissue segregation: Qualitative and quantitative determinants, Dev. Biol., 253 (2003), pp. 309-323.
[26] Dyson, L. and Baker, R. E., The importance of volume exclusion in modelling cellular migration, J. Math. Biol., 71 (2015), pp. 691-711. · Zbl 1332.92011
[27] Dyson, L., Maini, P. K., and Baker, R. E., Macroscopic limits of individual-based models for motile cell populations with volume exclusion, Phys. Rev. E, 86 (2012), 031903.
[28] Elbar, C. and Skrzeczkowski, J., Degenerate Cahn-Hilliard Equation: From Nonlocal to Local, preprint, https://arxiv.org/abs/2208.08955, 2022.
[29] Ellefsen, E. and Rodriguez, N., On equilibrium solutions to nonlocal mechanistic models in ecology, J. Appl. Anal. Comput., 11 (2021), pp. 2664-2686. · Zbl 07907297
[30] Elliott, C. M., The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical models for Phase Change Problems, , Birkhäuser, Basel, 1989, pp. 35-73. · Zbl 0692.73003
[31] Elliott, C. M. and Garcke, H., On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), pp. 404-423, doi:10.1137/S0036141094267662. · Zbl 0856.35071
[32] Elliott, C. M. and Garcke, H., Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Phys. D, 109 (1997), pp. 242-256. · Zbl 0925.35087
[33] Falcó, C., From random walks on networks to nonlinear diffusion, Phys. Rev. E, 106 (2022), 054103.
[34] Falcó, C., Baker, R. E., and Carrillo, J. A., A Local Continuum Model of Cell-Cell Adhesion, Figshare Media, 2022, https://figshare.com/projects/A_local_continuum_model_of_cell-cell_adhesion/142427.
[35] Feric, M., Vaidya, N., Harmon, T. S., Mitrea, D. M., Zhu, L., Richardson, T. M., Kriwacki, R. W., Pappu, R. V., and Brangwynne, C. P., Coexisting liquid phases underlie nucleolar subcompartments, Cell, 165 (2016), pp. 1686-1697.
[36] Foty, R. A. and Steinberg, M. S., Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy, Int. J. Dev. Biol., 48 (2004), pp. 397-409.
[37] Foty, R. A. and Steinberg, M. S., The differential adhesion hypothesis: A direct evaluation, Dev. Biol., 278 (2005), pp. 255-263.
[38] Francesco, M., Esposito, A., and Fagioli, S., Nonlinear degenerate cross-diffusion systems with nonlocal interaction, Nonlinear Anal., Theory Methods Appl., 169 (2018), pp. 94-117. · Zbl 1432.35114
[39] Goldstein, R. E., Pesci, A. I., and Shelley, M. J., Topology transitions and singularities in viscous flows, Phys. Rev. Lett., 70 (1993), pp. 3043-3046.
[40] Goldstein, R. E., Pesci, A. I., and Shelley, M. J., Instabilities and singularities in Hele-Shaw flow, Phys. Fluids, 10 (1998), pp. 2701-2723. · Zbl 1185.76632
[41] Gurtin, M. E. and MacCamy, R. C., On the diffusion of biological populations, Math. Biosci., 33 (1977), pp. 35-49. · Zbl 0362.92007
[42] Hashimoto, A., Nagao, A., and Okuda, S., Topological graph description of multicellular dynamics based on vertex model, J. Theoret. Biol., 437 (2018), pp. 187-201. · Zbl 1394.92032
[43] Hirashima, T., Rens, E. G., and Merks, R. M., Cellular potts modeling of complex multicellular behaviors in tissue morphogenesis, Dev. Growth Differ., 59 (2017), pp. 329-339.
[44] Holtfreter, J., Properties and functions of the surface coat in amphibian embryos, J. Exp. Zool., 93 (1943), pp. 251-323.
[45] Krieg, M., Arboleda-Estudillo, Y., Puech, P.-H., Käfer, J., Graner, F., Müller, D., and Heisenberg, C.-P., Tensile forces govern germ-layer organization in zebrafish, Nat. Cell Biol., 10 (2008), pp. 429-436.
[46] Laugesen, R. and Pugh, M., Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. Anal., 154 (2000), pp. 3-51. · Zbl 0980.35030
[47] Laugesen, R. and Pugh, M., Energy levels of steady states for thin-film-type equations, J. Differential Equations, 182 (2002), pp. 377-415. · Zbl 1011.34005
[48] Laugesen, R. and Pugh, M., Properties of steady states for thin film equations, Eur. J. Appl. Math., 11 (2000), pp. 293-351. · Zbl 1041.76008
[49] Lu, T. and Spruijt, E., Multiphase complex coacervate droplets, J. Amer. Chem. Soc., 142 (2020), pp. 2905-2914.
[50] Manning, M. L., Foty, R. A., Steinberg, M. S., and Schoetz, E.-M., Coaction of intercellular adhesion and cortical tension specifies tissue surface tension, Proc. Natl. Acad. Sci., 107 (2010), pp. 12517-12522.
[51] Mao, S., Kuldinow, D., Haataja, M. P., and Košmrlj, A., Phase behavior and morphology of multicomponent liquid mixtures, Soft Matter, 15 (2019), pp. 1297-1311.
[52] Matthes, D., McCann, R. J., and Savaré, G., A family of nonlinear fourth order equations of gradient flow type, Comm. Partial Differential Equations, 34 (2009), pp. 1352-1397. · Zbl 1187.35131
[53] Murakawa, H. and Togashi, H., Continuous models for cell-cell adhesion, J. Theoret. Biol., 374 (2015), pp. 1-12. · Zbl 1341.92019
[54] Myers, T. G., Thin films with high surface tension, SIAM Rev., 40 (1998), pp. 441-462, doi:10.1137/S003614459529284X. · Zbl 0908.35057
[55] Oelschläger, K., Large systems of interacting particles and the porous medium equation, J. Differential Equations, 88 (1990), pp. 294-346. · Zbl 0734.60101
[56] Santambrogio, F., Optimal Transport for Applied Mathematicians, , Birkhäuser/Springer, Cham, 2015. · Zbl 1401.49002
[57] Slepčev, D., Linear stability of selfsimilar solutions of unstable thin-film equations, Interface Free Bound., 11 (2009), pp. 375-398. · Zbl 1180.35432
[58] Steinberg, M. S., Mechanism of tissue reconstruction by dissociated cells, II: Time-course of events, Science, 137 (1962), pp. 762-763.
[59] Steinberg, M. S., On the mechanism of tissue reconstruction by dissociated cells, I. Population kinetics, differential adhesiveness, and the absence of directed migration, Proc. Natl. Acad. Sci. USA, 48 (1962), pp. 1577-1582.
[60] Steinberg, M. S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments, Proc. Natl. Acad. Sci. USA, 48 (1962), pp. 1769-1776.
[61] Steinberg, M. S., Reconstruction of tissues by dissociated cells: Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation, Science, 141 (1963), pp. 401-408.
[62] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.4), 2021, https://www.sagemath.org.
[63] Townes, P. L. and Holtfreter, J., Directed movements and selective adhesion of embryonic amphibian cells, J. Exp. Zool., 128 (1955), pp. 53-120.
[64] Tsai, T. Y.-C., Garner, R. M., and Megason, S. G., Adhesion-based self-organization in tissue patterning, Ann. Rev. Cell Dev. Biol., 38 (2022), pp. 349-374.
[65] Volkening, A., Abbott, M. R., Chandra, N., Dubois, B., Lim, F., Sexton, D., and Sandstede, B., Modeling stripe formation on growing zebrafish tailfins, Bull. Math. Biol., 82 (2020), 56. · Zbl 1443.92056
[66] Youssef, J., Nurse, A. K., Freund, L., and Morgan, J. R., Quantification of the forces driving self-assembly of three-dimensional microtissues, Proc. Natl. Acad. Sci., 108 (2011), pp. 6993-6998.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.