×

Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations. (English) Zbl 1460.65160

Summary: We study an implicit finite-volume scheme for nonlinear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced in our work [Commun. Math. Sci. 18, No. 5, 1259–1303 (2020; Zbl 1467.35317)]. Crucially, this scheme keeps the dissipation property of an associated fully discrete energy, and does so unconditionally with respect to the time step. Our main contribution in this work is to show the convergence of the method under suitable assumptions on the diffusion functions and potentials involved.

MSC:

65R20 Numerical methods for integral equations
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
45K05 Integro-partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1467.35317

References:

[1] Ambrosio, L., Gigli, N. and Savaré, G., Gradient Flows: In Metric Spaces and in the Space of Probability Measures, . ETH Zürich (Birkhäuser, 2005). · Zbl 1090.35002
[2] Armstrong, N. J., Painter, K. J. and Sherratt, J. A., A continuum approach to modelling cell-cell adhesion, J. Theor. Biol.243 (2006) 98-113. · Zbl 1447.92113
[3] Bailo, R., Carrillo, J. A. and Hu, J., Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient flow structure, Commun. Math. Sci.18(5) (2020) 1259-1303. · Zbl 1467.35317
[4] Balagué, D., Carrillo, J. A., Laurent, T. and Raoul, G., Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal.209 (2013) 1055-1088. · Zbl 1311.49053
[5] Barenblatt, G. I., On some unsteady motions of a liquid and gas in a porous medium, Prikl. Mat. Mekh.16 (1952) 67-78. · Zbl 0049.41902
[6] Benedetto, D., Caglioti, E. and Pulvirenti, M., A kinetic equation for granular media, ESAIM: M2AN31 (1997) 615-641. · Zbl 0888.73006
[7] Bertozzi, A. L., Kolokolnikov, T., Sun, H., Uminsky, D. and von Brecht, J., Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci.13 (2015) 955-985. · Zbl 1331.35044
[8] Bessemoulin-Chatard, M. and Chainais-Hillairet, C., Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems, J. Numer. Math.25 (2017) 147-168. · Zbl 1376.82105
[9] Bessemoulin-Chatard, M., Chainais-Hillairet, C. and Filbet, F., On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal.35 (2015) 1125-1149. · Zbl 1326.65145
[10] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer-Verlag, 2010). · Zbl 1218.46002
[11] Carrillo, J. A., Chertock, A. and Huang, Y., a finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys.17 (2015) 233-258. · Zbl 1388.65077
[12] Carrillo, J. A., Craig, K. and Yao, Y., Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, in Active Particles, eds. Bellomo, N., Degond, P. and Tadmor, E., Vol. 2 (Springer International Publishing, 2019), pp. 65-108. · Zbl 1451.76117
[13] Carrillo, J. A., Delgadino, M. G. and Mellet, A., Regularity of local minimizers of the interaction energy via obstacle problems, Commun. Math. Phys.343 (2016) 747-781. · Zbl 1337.49066
[14] Carrillo, J. A., Fagioli, S., Santambrogio, F. and Schmidtchen, M., Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal.50 (2018) 5695-5718. · Zbl 1402.35147
[15] Carrillo, J. A., Filbet, F. and Schmidtchen, M., Convergence of a finite volume scheme for a system of interacting species with cross-diffusion, Numer. Math.145 (2020) 473-511. · Zbl 1443.76155
[16] Carrillo, J. A., Huang, Y. and Martin, S., Explicit flock solutions for Quasi-Morse potentials, Eur. J. Appl. Math.25 (2014) 553-578. · Zbl 1304.82049
[17] Carrillo, J. A., Huang, Y. and Schmidtchen, M., Zoology of a nonlocal cross-diffusion model for two species, SIAM J. Appl. Math.78 (2018) 1078-1104. · Zbl 1392.35179
[18] Carrillo, J. A., Martin, S. and Panferov, V., A new interaction potential for swarming models, Phys. D, Nonlinear Phenom.260 (2013) 112-126.
[19] Carrillo, J. A., McCann, R. J. and Villani, C., Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam.19 (2003) 971-1018. · Zbl 1073.35127
[20] Carrillo, J. A., McCann, R. J. and Villani, C., Contractions in the 2-wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal.179 (2006) 217-263. · Zbl 1082.76105
[21] Carrillo, J. A., Murakawa, H., Sato, M., Togashi, H. and Trush, O., A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biol.474 (2019) 14-24. · Zbl 1414.92133
[22] Chainais-Hillairet, C. and Filbet, F., Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model, IMA J. Numer. Anal.27 (2007) 689-716. · Zbl 1133.65060
[23] Chang, J. S. and Cooper, G., A practical difference scheme for Fokker-Planck equations, J.Comput. Phys.6 (1970) 1-16. · Zbl 0221.65153
[24] D’Orsogna, M. R., Chuang, Y. L., Bertozzi, A. L. and Chayes, L. S., Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett.96 (2006) 104302.
[25] Fetecau, R. and Huang, Y., Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, Phys. D, Nonlinear Phenom.260 (2013) 49-64. · Zbl 1286.35017
[26] Fetecau, R. C., Collective Behavior of Biological aggregations in two dimensions: A Nonlocal kinetic model, Math. Models Methods Appl. Sci.21 (2011) 1539-1569. · Zbl 1219.92073
[27] Fetecau, R. C., Huang, Y. and Kolokolnikov, T., Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity24 (2011) 2681-2716. · Zbl 1288.92031
[28] Gurney, W. and Nisbet, R., The regulation of inhomogeneous populations, J. Theor. Biol.52 (1975) 441-457.
[29] Hilhorst, D., Van Der Hout, R. and Peletier, L. A., Nonlinear diffusion in the presence of fast reaction, Nonlinear Anal. Theory, Methods Appl.41 (2000) 803-823. · Zbl 0963.35103
[30] Kolokolnikov, T., Sun, H., Uminsky, D. and Bertozzi, A. L., Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E84 (2011) 015203.
[31] Li, Y.-X., Lukeman, R. and Edelstein-Keshet, L., Minimal mechanisms for school formation in self-propelled particles, Phys. D, Nonlinear Phenom.237 (2008) 699-720. · Zbl 1210.37069
[32] McCann, R. J., A convexity principle for Interacting Gases, Adv. Math.128 (1997) 153-179. · Zbl 0901.49012
[33] Mogilner, A. and Edelstein-Keshet, L., A non-local model for a swarm, J. Math. Biol.38 (1999) 534-570. · Zbl 0940.92032
[34] Murakawa, H. and Togashi, H., Continuous models for cell-cell adhesion, J. Theor. Biol.374 (2015) 1-12. · Zbl 1341.92019
[35] Otto, F., The Geometry of Dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations26 (2001) 101-174. · Zbl 0984.35089
[36] Pareschi, L. and Zanella, M., Structure preserving schemes for nonlinear Fokker-Planck equations and applications, J. Sci. Comput.74 (2018) 1575-1600. · Zbl 1395.65027
[37] Topaz, C. M. and Bertozzi, A. L., Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math.65 (2004) 152-174. · Zbl 1071.92048
[38] Topaz, C. M., Bertozzi, A. L. and Lewis, M. A., A nonlocal continuum model for biological aggregation, Bull. Math. Biol.68 (2006) 1601-1623. · Zbl 1334.92468
[39] Toscani, G., One-dimensional kinetic models of granular flows, ESAIM: Math. Model. Numer. Anal.34 (2010) 1277-1291. · Zbl 0981.76098
[40] Vazquez, J. L., The Porous Medium Equation (Oxford Univ. Press, 2006). · Zbl 1124.35035
[41] Volkening, A. and Sandstede, B., Modelling stripe formation in zebrafish: An agent-based approach, J. R. Soc. Interface12 (2015) 20150812.
[42] Zel’dovich, Y. B. and Kompaneets, A. S., On the theory of propagation of heat with the heat conductivity depending upon the temperature, Collection in honor of the seventieth birthday of academician A. F. Ioffe (1950) 61-71.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.