×

Towards non-invertible anomalies from generalized Ising models. (English) Zbl 07906159

Summary: We present a general approach to the bulk-boundary correspondence of noninvertible topological phases, including both topological and fracton orders. This is achieved by a novel bulk construction protocol where solvable \((d+1)\)-dimensional bulk models with noninvertible topology are constructed from the so-called generalized Ising (GI) models in \(d\) dimensions. The GI models can then terminate on the boundaries of the bulk models. The construction generates abundant examples, including not only prototype ones such as \(\mathbb{Z}_2\) toric code models in any dimensions no less than two, and the X-cube fracton model, but also more diverse ones such as the \(\mathbb{Z}_2 \times \mathbb{Z}_2\) topological order, the 4d \(\mathbb{Z}_2\) topological order with pure-loop excitations, etc. The boundary of the solvable model is potentially anomalous and corresponds to precisely only sectors of the GI model that host certain total symmetry charges and/or satisfy certain boundary conditions. We derive a concrete condition for such bulk-boundary correspondence. The condition is violated only when the bulk model is either trivial or fracton ordered. A generalized notion of Kramers-Wannier duality plays an important role in the construction. Also, utilizing the duality, we find an example where a single anomalous theory can be realized on the boundaries of two distinct bulk fracton models, a phenomenon not expected in the case of topological orders. More generally, topological orders may also be generated starting with lattice models beyond the GI models, such as those with symmetry protected topological orders, through a variant bulk construction, which we provide in an appendix.

MSC:

81Txx Quantum field theory; related classical field theories
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
82Bxx Equilibrium statistical mechanics

References:

[1] R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632 (1981), doi:10.1103/PhysRevB.23.5632. · doi:10.1103/PhysRevB.23.5632
[2] B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the exis-tence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25, 2185 (1982), doi:10.1103/PhysRevB.25.2185. · doi:10.1103/PhysRevB.25.2185
[3] Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett. 71, 3697 (1993), doi:10.1103/PhysRevLett.71.3697. · Zbl 0972.81712 · doi:10.1103/PhysRevLett.71.3697
[4] X. G. Wen, Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states, Phys. Rev. B 41, 12838 (1990), doi:10.1103/PhysRevB.41.12838. · doi:10.1103/PhysRevB.41.12838
[5] A. M. Chang, Chiral Luttinger liquids at the fractional quantum Hall edge, Rev. Mod. Phys. 75, 1449 (2003), doi:10.1103/RevModPhys.75.1449. · Zbl 1205.82126 · doi:10.1103/RevModPhys.75.1449
[6] C. L. Kane and M. P. A. Fisher, Quantized thermal transport in the fractional quantum Hall effect, Phys. Rev. B 55, 15832 (1997), doi:10.1103/PhysRevB.55.15832. · doi:10.1103/PhysRevB.55.15832
[7] C. G. Callan and J. A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B 250, 427 (1985), doi:10.1016/0550-3213(85)90489-4. · doi:10.1016/0550-3213(85)90489-4
[8] C. L. Kane and M. P. A. Fisher, Quantized thermal transport in the fractional quantum Hall effect, Phys. Rev. B 55, 15832 (1997), doi:10.1103/PhysRevB.55.15832. · doi:10.1103/PhysRevB.55.15832
[9] S. Ryu, J. E. Moore and A. W. W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85, 045104 (2012), doi:10.1103/PhysRevB.85.045104. · doi:10.1103/PhysRevB.85.045104
[10] X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013), doi:10.1103/PhysRevD.88.045013. · doi:10.1103/PhysRevD.88.045013
[11] M. Levin, Protected edge modes without Symmetry, Phys. Rev. X 3, 021009 (2013), doi:10.1103/PhysRevX.3.021009. · doi:10.1103/PhysRevX.3.021009
[12] A. Vishwanath and T. Senthil, Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect, Phys. Rev. X 3, 011016 (2013), doi:10.1103/PhysRevX.3.011016. · doi:10.1103/PhysRevX.3.011016
[13] D. V. Else and C. Nayak, Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014), doi:10.1103/PhysRevB.90.235137. · doi:10.1103/PhysRevB.90.235137
[14] X. Chen, F. J. Burnell, A. Vishwanath and L. Fidkowski, Anomalous symmetry fractionalization and surface topological order, Phys. Rev. X 5, 041013 (2015), doi:10.1103/PhysRevX.5.041013. · doi:10.1103/PhysRevX.5.041013
[15] X. G. Wen, Gapless boundary excitations in the quantum Hall states and in the chiral spin states, Phys. Rev. B 43, 11025 (1991), doi:10.1103/PhysRevB.43.11025. · doi:10.1103/PhysRevB.43.11025
[16] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, (arXiv preprint) doi:10.48550/arXiv.quant-ph/9811052. · doi:10.48550/arXiv.quant-ph/9811052
[17] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006), doi:10.1016/j.aop.2005.10.005. · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[18] F. A. Bais and J. K. Slingerland, Condensate-induced transitions between topologically ordered phases, Phys. Rev. B 79, 045316 (2009), doi:10.1103/PhysRevB.79.045316. · doi:10.1103/PhysRevB.79.045316
[19] S. Beigi, P. W. Shor and D. Whalen, The quantum double model with boundary: Conden-sations and symmetries, Commun. Math. Phys. 306, 663 (2011), doi:10.1007/s00220-011-1294-x. · Zbl 1229.81120 · doi:10.1007/s00220-011-1294-x
[20] A. Kapustin and N. Saulina, Topological boundary conditions in Abelian Chern-Simons theory, Nucl. Phys. B 845, 393 (2011), doi:10.1016/j.nuclphysb.2010.12.017. · Zbl 1207.81060 · doi:10.1016/j.nuclphysb.2010.12.017
[21] A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012), doi:10.1007/s00220-012-1500-5. · Zbl 1250.81141 · doi:10.1007/s00220-012-1500-5
[22] M. Levin, Protected edge modes without symmetry, Phys. Rev. X 3, 021009 (2013), doi:10.1103/PhysRevX.3.021009. · doi:10.1103/PhysRevX.3.021009
[23] M. Barkeshli, C.-M. Jian and X.-L. Qi, Classification of topological defects in Abelian topo-logical states, Phys. Rev. B 88, 241103 (2013), doi:10.1103/PhysRevB.88.241103. · doi:10.1103/PhysRevB.88.241103
[24] L. Kong, Anyon condensation and tensor categories, Nucl. Phys. B 886, 436 (2014), doi:10.1016/j.nuclphysb.2014.07.003. · Zbl 1325.81156 · doi:10.1016/j.nuclphysb.2014.07.003
[25] L. Kong and X.-G. Wen, Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions, (arXiv preprint) doi:10.48550/arXiv.1405.5858. · doi:10.48550/arXiv.1405.5858
[26] T. Lan, J. C. Wang and X.-G. Wen, Gapped domain walls, gapped bound-aries, and topological degeneracy, Phys. Rev. Lett. 114, 076402 (2015), doi:10.1103/PhysRevLett.114.076402. · doi:10.1103/PhysRevLett.114.076402
[27] L. Kong, X.-G. Wen and H. Zheng, Boundary-bulk relation in topological orders, Nucl. Phys. B 922, 62 (2017), doi:10.1016/j.nuclphysb.2017.06.023. · Zbl 1373.82093 · doi:10.1016/j.nuclphysb.2017.06.023
[28] L.-Y. Hung and Y. Wan, Generalized ADE classification of topological boundaries and anyon condensation, J. High Energy Phys. 07, 120 (2015), doi:10.1007/JHEP07(2015)120. · Zbl 1388.81330 · doi:10.1007/JHEP07(2015)120
[29] L. Kong and H. Zheng, Gapless edges of 2d topological orders and enriched monoidal categories, Nucl. Phys. B 927, 140 (2018), doi:10.1016/j.nuclphysb.2017.12.007. · Zbl 1380.81335 · doi:10.1016/j.nuclphysb.2017.12.007
[30] Y. Hu, Z.-X. Luo, R. Pankovich, Y. Wan and Y.-S. Wu, Boundary Hamiltonian theory for gapped topological phases on an open surface, J. High Energy Phys. 01, 134 (2018), doi:10.1007/JHEP01(2018)134. · Zbl 1384.81126 · doi:10.1007/JHEP01(2018)134
[31] I. Cong, M. Cheng and Z. Wang, Hamiltonian and algebraic theories of gapped boundaries in topological phases of matter, Commun. Math. Phys. 355, 645 (2017), doi:10.1007/s00220-017-2960-4. · Zbl 1381.37091 · doi:10.1007/s00220-017-2960-4
[32] H. Wang, Y. Li, Y. Hu and Y. Wan, Gapped boundary theory of the twisted gauge theory model of three-dimensional topological orders, J. High Energy Phys. 10, 114 (2018), doi:10.1007/JHEP10(2018)114. · Zbl 1402.81206 · doi:10.1007/JHEP10(2018)114
[33] D. Bulmash and T. Iadecola, Braiding and gapped boundaries in fracton topological phases, Phys. Rev. B 99, 125132 (2019), doi:10.1103/PhysRevB.99.125132. · doi:10.1103/PhysRevB.99.125132
[34] J. May-Mann and T. L. Hughes, Families of gapped interfaces between fractional quantum Hall states, Phys. Rev. B 99, 155134 (2019), doi:10.1103/PhysRevB.99.155134. · doi:10.1103/PhysRevB.99.155134
[35] C. Shen and L.-Y. Hung, Defect Verlinde formula for edge excitations in topological order, Phys. Rev. Lett. 123, 051602 (2019), doi:10.1103/PhysRevLett.123.051602. · doi:10.1103/PhysRevLett.123.051602
[36] W.-Q. Chen, C.-M. Jian, L. Kong, Y.-Z. You and H. Zheng, Topological phase transition on the edge of two-dimensional 2 topological order, Phys. Rev. B 102, 045139 (2020), doi:10.1103/PhysRevB.102.045139. · doi:10.1103/PhysRevB.102.045139
[37] W. Ji and X.-G. Wen, Noninvertible anomalies and mapping-class-group transfor-mation of anomalous partition functions, Phys. Rev. Res. 1, 033054 (2019), doi:10.1103/PhysRevResearch.1.033054. · doi:10.1103/PhysRevResearch.1.033054
[38] J. C. Bridgeman and D. Barter, Computing data for Levin-Wen with defects, Quantum 4, 277 (2020), doi:10.22331/q-2020-06-04-277. · doi:10.22331/q-2020-06-04-277
[39] T. Lan, X. Wen, L. Kong and X.-G. Wen, Gapped domain walls between 2+1D topologically ordered states, Phys. Rev. Res. 2, 023331 (2020), doi:10.1103/PhysRevResearch.2.023331. · doi:10.1103/PhysRevResearch.2.023331
[40] B. Shi and I. H. Kim, Entanglement bootstrap approach for gapped domain walls, Phys. Rev. B 103, 115150 (2021), doi:10.1103/PhysRevB.103.115150. · doi:10.1103/PhysRevB.103.115150
[41] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang and H. Zheng, Algebraic higher symmetry and categorical symmetry: A holographic and entanglement view of symmetry, Phys. Rev. Res. 2, 043086 (2020), doi:10.1103/PhysRevResearch.2.043086. · doi:10.1103/PhysRevResearch.2.043086
[42] A. Chatterjee and X.-G. Wen, Symmetry as a shadow of topological order and a derivation of topological holographic principle, Phys. Rev. B 107, 155136 (2023), doi:10.1103/PhysRevB.107.155136. · doi:10.1103/PhysRevB.107.155136
[43] Z.-X. Luo, R. C. Spieler, H.-Y. Sun and A. Karch, Boundary theory of the X-cube model in the continuum, Phys. Rev. B 106, 195102 (2022), doi:10.1103/PhysRevB.106.195102. · doi:10.1103/PhysRevB.106.195102
[44] W. B. Fontana and R. G. Pereira, Boundary modes in the Chamon model, SciPost Phys. 15, 010 (2023), doi:10.21468/scipostphys.15.1.010. · Zbl 07903658 · doi:10.21468/scipostphys.15.1.010
[45] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/S0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[46] D. S. Freed, Four lectures on finite symmetry in qft, in Global categorical symmetries summer school, Perimeter Institute, Waterloo, Canada (2022).
[47] W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020), doi:10.1103/PhysRevResearch.2.033417. · doi:10.1103/PhysRevResearch.2.033417
[48] W.-Q. Chen, C.-M. Jian, L. Kong, Y.-Z. You and H. Zheng, Topological phase transition on the edge of two-dimensional 2 topological order, Phys. Rev. B 102, 045139 (2020), doi:10.1103/PhysRevB.102.045139. · doi:10.1103/PhysRevB.102.045139
[49] D. S. Freed and C. Teleman, Topological dualities in the Ising model, Geom. Topol. 26, 1907 (2018), doi:10.2140/gt.2022.26.1907. · Zbl 1511.57033 · doi:10.2140/gt.2022.26.1907
[50] W. Ji and X.-G. Wen, A unified view on symmetry, anomalous symmetry and non-invertible gravitational anomaly, (arXiv preprint) doi:10.48550/arXiv.2106.02069. · doi:10.48550/arXiv.2106.02069
[51] L. Kong, X.-G. Wen and H. Zheng, One dimensional gapped quantum phases and enriched fusion categories, J. High Energy Phys. 03, 022 (2022), doi:10.1007/JHEP03(2022)022. · Zbl 1522.81559 · doi:10.1007/JHEP03(2022)022
[52] L. Kong and H. Zheng, A mathematical theory of gapless edges of 2d topological orders. Part I, J. High Energy Phys. 02, 150 (2020), doi:10.1007/JHEP02(2020)150. · Zbl 1435.81184 · doi:10.1007/JHEP02(2020)150
[53] L. Kong and H. Zheng, A mathematical theory of gapless edges of 2d topological orders. Part II, Nucl. Phys. B 966, 115384 (2021), doi:10.1016/j.nuclphysb.2021.115384. · Zbl 1509.81582 · doi:10.1016/j.nuclphysb.2021.115384
[54] R. Thorngren and Y. Wang, Fusion category symmetry I: Anomaly in-flow and gapped phases, (arXiv preprint) doi:10.48550/arXiv.1912.02817. · Zbl 07865702 · doi:10.48550/arXiv.1912.02817
[55] D. Gaiotto and J. Kulp, Orbifold groupoids, J. High Energy Phys. 02, 132 (2021), doi:10.1007/JHEP02(2021)132. · Zbl 1460.83094 · doi:10.1007/JHEP02(2021)132
[56] R. Thorngren and Y. Wang, Fusion category symmetry II: Categoriosities at c = 1 and beyond, (arXiv preprint) doi:10.48550/arXiv.2106.12577. · doi:10.48550/arXiv.2106.12577
[57] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Topological defect lines and renormalization group flows in two dimensions, J. High Energy Phys. 01, 026 (2019), doi:10.1007/JHEP01(2019)026. · Zbl 1409.81134 · doi:10.1007/JHEP01(2019)026
[58] J. Haah, Commuting Pauli Hamiltonians as maps between free modules, Commun. Math. Phys. 324, 351 (2013), doi:10.1007/s00220-013-1810-2. · Zbl 1277.82014 · doi:10.1007/s00220-013-1810-2
[59] S. Vijay, J. Haah and L. Fu, Fracton topological order, generalized lattice gauge theory, and duality, Phys. Rev. B 94, 235157 (2016), doi:10.1103/PhysRevB.94.235157. · doi:10.1103/PhysRevB.94.235157
[60] M. H. Freedman, D. A. Meyer and F. Luo, 2 -systolic freedom and quantum codes, in Mathematics of quantum computation, CRC Press, Boca Raton, USA, ISBN 9780429122798 (2002).
[61] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, Topological quantum memory, J. Math. Phys. 43, 4452 (2002), doi:10.1063/1.1499754. · Zbl 1060.94045 · doi:10.1063/1.1499754
[62] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129, 393 (1990), doi:10.1007/BF02096988. · Zbl 0703.58011 · doi:10.1007/BF02096988
[63] K. Walker and Z. Wang, (3+1)-TQFTs and topological insulators, Front. Phys. 7, 150 (2011), doi:10.1007/s11467-011-0194-z. · doi:10.1007/s11467-011-0194-z
[64] M. H. Freedman and M. B. Hastings, Double semions in arbitrary dimension, Commun. Math. Phys. 347, 389 (2016), doi:10.1007/s00220-016-2604-0. · Zbl 1350.81028 · doi:10.1007/s00220-016-2604-0
[65] J. Haah, Algebraic methods for quantum codes on lattices, Rev. Colomb. Mat. 50, 62214 (2016), doi:10.15446/recolma.v50n2.62214. · Zbl 1361.81043 · doi:10.15446/recolma.v50n2.62214
[66] A. Chatterjee and X.-G. Wen, Symmetry as a shadow of topological order and a derivation of topological holographic principle, Phys. Rev. B 107, 155136 (2023), doi:10.1103/PhysRevB.107.155136. · doi:10.1103/PhysRevB.107.155136
[67] H. Moradi, S. F. Moosavian and A. Tiwari, Topological holography: To-wards a unification of Landau and beyond-Landau physics, (arXiv preprint) doi:10.48550/arXiv.2207.10712. · doi:10.48550/arXiv.2207.10712
[68] K. Kawagoe and M. Levin, Microscopic definitions of anyon data, Phys. Rev. B 101, 115113 (2020), doi:10.1103/PhysRevB.101.115113. · doi:10.1103/PhysRevB.101.115113
[69] D. S. Freed and C. Teleman, Topological dualities in the Ising model, Geom. Topol. 26, 1907 (2022), doi:10.2140/gt.2022.26.1907. · Zbl 1511.57033 · doi:10.2140/gt.2022.26.1907
[70] D. S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys. 326, 459 (2014), doi:10.1007/S00220-013-1880-1. · Zbl 1285.81057 · doi:10.1007/S00220-013-1880-1
[71] F. J. Burnell, X. Chen, L. Fidkowski and A. Vishwanath, Exactly soluble model of a three-dimensional symmetry-protected topological phase of bosons with surface topological or-der, Phys. Rev. B 90, 245122 (2014), doi:10.1103/PhysRevB.90.245122. · doi:10.1103/PhysRevB.90.245122
[72] S. Bravyi, M. B. Hastings and S. Michalakis, Topological quantum order: Stability under local perturbations, J. Math. Phys. 51, 093512 (2010), doi:10.1063/1.3490195. · Zbl 1309.81067 · doi:10.1063/1.3490195
[73] J. E. Moore and D.-H. Lee, Geometric effects on p + ip and d + id superconducting arrays, Phys. Rev. B 69, 104511 (2004), doi:10.1103/PhysRevB.69.104511. · doi:10.1103/PhysRevB.69.104511
[74] C. Xu and J. E. Moore, Strong-weak coupling self-duality in the two-dimensional quantum phase transition of p + ip superconducting arrays, Phys. Rev. Lett. 93, 047003 (2004), doi:10.1103/PhysRevLett.93.047003. · doi:10.1103/PhysRevLett.93.047003
[75] D. A. Johnston, M. Mueller and W. Janke, Plaquette Ising models, degeneracy and scaling, Eur. Phys. J. Spec. Top. 226, 749 (2017), doi:10.1140/epjst/e2016-60329-4. · doi:10.1140/epjst/e2016-60329-4
[76] M. E. J. Newman and C. Moore, Glassy dynamics and aging in an exactly solvable spin model, Phys. Rev. E 60, 5068 (1999), doi:10.1103/PhysRevE.60.5068. · doi:10.1103/PhysRevE.60.5068
[77] J. P. Garrahan and M. E. J. Newman, Glassiness and constrained dynamics of a short-range nondisordered spin model, Phys. Rev. E 62, 7670 (2000), doi:10.1103/PhysRevE.62.7670. · doi:10.1103/PhysRevE.62.7670
[78] L. M. Vasiloiu, T. H. E. Oakes, F. Carollo and J. P. Garrahan, Trajectory phase transitions in noninteracting spin systems, Phys. Rev. E 101, 042115 (2020), doi:10.1103/PhysRevE.101.042115. · doi:10.1103/PhysRevE.101.042115
[79] Z. Zhou, X.-F. Zhang, F. Pollmann and Y. You, Fractal quantum phase transitions: Critical phenomena beyond renormalization, (arXiv preprint) doi:10.48550/arXiv.2105.05851. · doi:10.48550/arXiv.2105.05851
[80] N. E. Myerson-Jain, S. Yan, D. Weld and C. Xu, Construction of fractal order and phase transition with Rydberg atoms, Phys. Rev. Lett. 128, 017601 (2022), doi:10.1103/PhysRevLett.128.017601. · doi:10.1103/PhysRevLett.128.017601
[81] C. Xu and L. Fu, Fractionalization in Josephson junction arrays hinged by quantum spin Hall edges, Phys. Rev. B 81, 134435 (2010), doi:10.1103/PhysRevB.81.134435. · doi:10.1103/PhysRevB.81.134435
[82] X.-C. Wu, W. Ji and C. Xu, Categorical symmetries at criticality, J. Stat. Mech.: Theory Exp. 073101 (2021), doi:10.1088/1742-5468/ac08fe. · Zbl 1539.81090 · doi:10.1088/1742-5468/ac08fe
[83] Y. Fuji, Anisotropic layer construction of anisotropic fracton models, Phys. Rev. B 100, 235115 (2019), doi:10.1103/PhysRevB.100.235115. · doi:10.1103/PhysRevB.100.235115
[84] W. Shirley, K. Slagle and X. Chen, Foliated fracton order from gauging subsystem symme-tries, SciPost Phys. 6, 041 (2019), doi:10.21468/SciPostPhys.6.4.041. · doi:10.21468/SciPostPhys.6.4.041
[85] H. Bombin, G. Duclos-Cianci and D. Poulin, Universal topological phase of two-dimensional stabilizer codes, New J. Phys. 14, 073048 (2012), doi:10.1088/1367-2630/14/7/073048. · Zbl 1448.81223 · doi:10.1088/1367-2630/14/7/073048
[86] H. W. J. Blöte, A. Compagner, P. A. M. Cornelissen, A. Hoogland, F. Mallezie and C. Vanderzande, Critical behaviour of two Ising models with multispin interactions, Phys. A: Stat. Mech. Appl. 139, 395 (1986), doi:10.1016/0378-4371(86)90128-7. · doi:10.1016/0378-4371(86)90128-7
[87] C. Vanderzande and F. Igloi, Critical behaviour and logarithmic corrections of a quan-tum model with three-spin interaction, J. Phys. A: Math. Gen. 20, 4539 (1987), doi:10.1088/0305-4470/20/13/052. · doi:10.1088/0305-4470/20/13/052
[88] F. Igloi, Conformal invariance and surface critical behaviour of a quantum chain with three-spin interaction, J. Phys. A: Math. Gen. 20, 5319 (1987), doi:10.1088/0305-4470/20/15/043. · doi:10.1088/0305-4470/20/15/043
[89] F. C. Alcaraz and M. N. Barber, Conformal invariance and the critical behaviour of a quantum spin Hamiltonian with three-spin coupling, J. Phys. A: Math. Gen. 20, 179 (1987), doi:10.1088/0305-4470/20/1/026. · doi:10.1088/0305-4470/20/1/026
[90] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, Topological quantum memory, J. Math. Phys. 43, 4452 (2002), doi:10.1063/1.1499754. · Zbl 1060.94045 · doi:10.1063/1.1499754
[91] R. Alicki, M. Horodecki, P. Horodecki and R. Horodecki, On thermal stability of topological qubit in Kitaev’s 4D model, Open Syst. Inf. Dyn. 17, 1 (2010), doi:10.1142/S1230161210000023. · Zbl 1190.81027 · doi:10.1142/S1230161210000023
[92] H. Bombin, G. Duclos-Cianci and D. Poulin, Universal topological phase of two-dimensional stabilizer codes, New J. Phys. 14, 073048 (2012), doi:10.1088/1367-2630/14/7/073048. · Zbl 1448.81223 · doi:10.1088/1367-2630/14/7/073048
[93] O. Buerschaper and M. Aguado, Mapping Kitaev’s quantum double lattice mod-els to Levin and Wen’s string-net models, Phys. Rev. B 80, 155136 (2009), doi:10.1103/PhysRevB.80.155136. · doi:10.1103/PhysRevB.80.155136
[94] Z. Kadar, A. Marzuoli and M. Rasetti, Microscopic description of 2d topological phases, duality and 3d state sums, Adv. Math. Phys. 1 (2010), doi:10.1155/2010/671039. · Zbl 1201.81099 · doi:10.1155/2010/671039
[95] L. Lootens, B. Vancraeynest-De Cuiper, N. Schuch and F. Verstraete, Mapping between Morita-equivalent string-net states with a constant depth quantum circuit, Phys. Rev. B 105, 085130 (2022), doi:10.1103/PhysRevB.105.085130. · doi:10.1103/PhysRevB.105.085130
[96] J. Haah, Local stabilizer codes in three dimensions without string logical operators, Phys. Rev. A 83, 042330 (2011), doi:10.1103/PhysRevA.83.042330. · doi:10.1103/PhysRevA.83.042330
[97] H. Ma, E. Lake, X. Chen and M. Hermele, Fracton topological order via coupled layers, Phys. Rev. B 95, 245126 (2017), doi:10.1103/PhysRevB.95.245126. · doi:10.1103/PhysRevB.95.245126
[98] K. Slagle and Y. B. Kim, Fracton topological order from nearest-neighbor two-spin interac-tions and dualities, Phys. Rev. B 96, 165106 (2017), doi:10.1103/PhysRevB.96.165106. · doi:10.1103/PhysRevB.96.165106
[99] S. Vijay, Isotropic layer construction and phase diagram for fracton topological phases, (arXiv preprint) doi:10.48550/arXiv.1701.00762. · doi:10.48550/arXiv.1701.00762
[100] S. Vijay and L. Fu, A generalization of non-Abelian anyons in three dimensions, (arXiv preprint) doi:10.48550/arXiv.1706.07070. · doi:10.48550/arXiv.1706.07070
[101] A. Prem, S.-J. Huang, H. Song and M. Hermele, Cage-net fracton models, Phys. Rev. X 9, 021010 (2019), doi:10.1103/PhysRevX.9.021010. · doi:10.1103/PhysRevX.9.021010
[102] W. Shirley, K. Slagle and X. Chen, Twisted foliated fracton phases, Phys. Rev. B 102, 115103 (2020), doi:10.1103/PhysRevB.102.115103. · doi:10.1103/PhysRevB.102.115103
[103] N. Tantivasadakarn, W. Ji and S. Vijay, Hybrid fracton phases: Parent orders for liquid and nonliquid quantum phases, Phys. Rev. B 103, 245136 (2021), doi:10.1103/PhysRevB.103.245136. · doi:10.1103/PhysRevB.103.245136
[104] N. Tantivasadakarn, W. Ji and S. Vijay, Non-Abelian hybrid fracton orders, Phys. Rev. B 104, 115117 (2021), doi:10.1103/PhysRevB.104.115117. · doi:10.1103/PhysRevB.104.115117
[105] T. Schuster, N. Tantivasadakarn, A. Vishwanath and N. Y. Yao, A holographic view of topological stabilizer codes, In preparation.
[106] D. Gottesman, Stabilizer codes and quantum error correction, PhD thesis, California In-stitute of Technology, Pasadena, USA (1997).
[107] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum informa-tion, Cambridge University Press, Cambridge, UK, ISBN 9781107002173 (2010), doi:10.1017/CBO9780511976667. · Zbl 1288.81001 · doi:10.1017/CBO9780511976667
[108] S. Vijay, J. Haah and L. Fu, A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations, Phys. Rev. B 92, 235136 (2015), doi:10.1103/PhysRevB.92.235136. · doi:10.1103/PhysRevB.92.235136
[109] S. Vijay, J. Haah and L. Fu, Fracton topological order, generalized lattice gauge theory, and duality, Phys. Rev. B 94, 235157 (2016), doi:10.1103/PhysRevB.94.235157. · doi:10.1103/PhysRevB.94.235157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.