×

The most exciting game. (English) Zbl 07905723

Summary: Motivated by a problem posed by Aldous [2, 1] our goal is to find the maximal-entropy win-martingale:
In a sports game between two teams, the chance the home team wins is initially \(x_0 \in (0, 1)\) and finally 0 or 1. As an idealization we take a continuous time interval \([0, 1]\) and let \(M_t\) be the probability at time \(t\) that the home team wins. Mathematically, \(M = (M_t)_{t \in [0, 1]}\) is modelled as a continuous martingale. We consider the problem to find the most random martingale \(M\) of this type, where ‘most random’ is interpreted as a maximal entropy criterion. In discrete time this is equivalent to the minimization of relative entropy w.r.t. a Gaussian random walk. The continuous time analogue is that the max-entropy win-martingale \(M\) should minimize specific relative entropy with respect to Brownian motion in the sense of Gantert [20]. We use this to prove that \(M\) is characterized by the stochastic differential equation \[ dM_t = \frac{\sin (\pi M_t)}{\pi \sqrt{1 - t}} dB_t. \] To derive the form of the optimizer we use a scaling argument together with a new first order condition for martingale optimal transport, which may be of interest in its own right.

MSC:

91A10 Noncooperative games
60G44 Martingales with continuous parameter
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] D. Aldous. notes, https://www.stat.berkeley.edu/ aldous/Research/OP/ent-MG.pdf.
[2] D. Aldous. What is the max-entropy win-probability martingale? https://www.stat.berkeley.edu/ aldous/Research/OP/maxentmg.html.
[3] D. Aldous. Using prediction market data to illustrate undergraduate probability. The American Mathematical Monthly, 120(7):583-593, 2013. MathSciNet: MR3096465 · Zbl 1280.91136
[4] M. Avellaneda. Calibrating volatility surfaces via relative-entropy minimization. Quantitative Finance, 1(1):42-51, 2001.
[5] J. Backhoff-Veraguas, M. Beiglböck, M. Huesmann, and S. Källblad. Martingale Benamou-Brenier: a probabilistic perspective. Ann. Probab., 48(5):2258-2289, 2020. MathSciNet: MR4152642 · Zbl 1473.60071
[6] J. Backhoff-Veraguas, M. Beiglböck, W. Schachermayer, and B. Tschiderer. The structure of martingale Benamou-Brenier in multiple dimensions. ArXiv e-prints, arXiv:2306.11019, 2023.
[7] J. Backhoff-Veraguas and C. Unterberger. On the specific relative entropy between martingale diffusions on the line. Electronic Communications in Probability, 28:1-12, 2023. MathSciNet: MR4651162 · Zbl 1534.60052
[8] R. Bass. Skorokhod embedding via stochastic integrals. In J. Azéma and M. Yor, editors, Séminaire de Probabilités XVII 1981/82, number 986 in Lecture Notes in Mathematics, pages 221-224. Springer, 1983. MathSciNet: MR0770414 · Zbl 0509.60080
[9] M. Beiglböck, A. Cox, and M. Huesmann. Optimal transport and Skorokhod embedding. Invent. Math., 208(2):327-400, 2017. MathSciNet: MR3639595 · Zbl 1371.60072
[10] M. Beiglböck, P. Henry-Labordère, and F. Penkner. Model-independent bounds for option prices: A mass transport approach. Finance Stoch., 17(3):477-501, 2013. MathSciNet: MR3066985 · Zbl 1277.91162
[11] M. Beiglböck and N. Juillet. Shadow couplings. Trans. Amer. Math. Soc., 374(7):4973-5002, 2021. MathSciNet: MR4273182 · Zbl 1484.60051
[12] M. Beiglböck, M. Nutz, and F. Stebegg. Fine properties of the optimal Skorokhod embedding problem. J. Eur. Math. Soc. (JEMS), 24(4):1389-1429, 2022. MathSciNet: MR4397044 · Zbl 1504.60062
[13] M. Beiglböck, M. Nutz, and N. Touzi. Complete duality for martingale optimal transport on the line. Ann. Probab., 45(5):3038-3074, 2017. MathSciNet: MR3706738 · Zbl 1417.60032
[14] B. Bouchard and M. Nutz. Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab., 25(2):823-859, 2015. MathSciNet: MR3313756 · Zbl 1322.60045
[15] A. Cohen and Y. Dolinsky. A scaling limit for utility indifference prices in the discretised Bachelier model. Finance Stoch., 26(2):335-358, 2022. MathSciNet: MR4397933 · Zbl 1484.91472
[16] A. Figalli and F. Glaudo. An invitation to optimal transport, Wasserstein distances, and gradient flows. EMS Textbooks in Mathematics. EMS Press, Berlin, 2021. MathSciNet: MR4331435 · Zbl 1472.49001
[17] H. Föllmer. Doob decomposition, Dirichlet processes, and entropies on Wiener space. In Dirichlet forms and related topics, volume 394 of Springer Proc. Math. Stat., pages 119-141. Springer, Singapore, [2022] ©2022. MathSciNet: MR4508843 · Zbl 1497.60065
[18] H. Föllmer. Optimal couplings on Wiener space and an extension of Talagrand’s transport inequality. In Stochastic analysis, filtering, and stochastic optimization, pages 147-175. Springer, Cham, [2022] ©2022. MathSciNet: MR4433813 · Zbl 1504.60088
[19] A. Galichon, P. Henry-Labordère, and N. Touzi. A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab., 24(1):312-336, 2014. MathSciNet: MR3161649 zbMATH: 1285.49012 · Zbl 1285.49012
[20] N. Gantert. Einige grosse Abweichungen der Brownschen Bewegung, volume 224 of Bonner Mathematische Schriften [Bonn Mathematical Publications]. Universität Bonn, Mathematisches Institut, Bonn, 1991. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991. MathSciNet: MR1179159 · Zbl 0746.60026
[21] G. Guo, D. Possamaï, and C. Reisinger. Randomness and early termination: what makes a game exciting? ArXiv e-prints, arXiv:2306.07133, 2023.
[22] D. Hobson and A. Neuberger. Robust bounds for forward start options. Math. Finance, 22(1):31-56, 2012. MathSciNet: MR2881879 · Zbl 1278.91162
[23] I. Karatzas and S. Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 2012. MathSciNet: MR1121940
[24] F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling. MathSciNet: MR3409718 · Zbl 1401.49002
[25] C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. MathSciNet: MR1964483 · Zbl 1106.90001
[26] C. Villani. Optimal Transport. Old and New, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer, 2009. MathSciNet: MR2459454 · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.