×

Splines finite element solver for one-dimensional time-dependent Maxwell’s equations via Fourier transform discretization. (English) Zbl 07905404

Summary: In this article, we solve the time-dependent Maxwell coupled equations in their one-dimensional version relatively to space-variable. We effectuate a variable reduction via Fourier transform to make the time variable as a frequency parameter easy and quickly to manage. A Galerkin variational method based on higher-order spline interpolations is used to approximate the solution relatively to the spacial variable. So, the state of existence of the solution, its uniqueness, and its regularity are studied and proved, and the study is also provided by an error estimate and the convergence orders of the proposed method. Also, we use the critical Nyquist frequency to calculate numerically the solution of the Inverse Fourier Transform (IFT); and for all numerical computations, we consider several quadrature methods. Finally, we give some experiments to illustrate the success of such an approach.

MSC:

65D05 Numerical interpolation
65D07 Numerical computation using splines
65D30 Numerical integration
65D32 Numerical quadrature and cubature formulas
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
65F30 Other matrix algorithms (MSC2010)
65G20 Algorithms with automatic result verification
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] M. Addam. Approximation du Problème de Diffusion en Tomographie Optique et Problème Inverse. Dissertation, LMPA, Université Lille-Nord de France, 2010.
[2] M. Addam, A. Bouhamidi, and K. Jbilou. A numerical method for one-dimensional diffusion problem using Fourier transform and the B-spline Galerkin method. Applied Mathematics and Computation, 215: 4067-4079, 2010. · Zbl 1189.65222
[3] J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Physics, 114(2): 185-200, 1994. · Zbl 0814.65129
[4] Brattka, V., and Yoshikawa, A., Towards computability of elliptic boundary value problems in variational formulation, Journal of Complexity 22 (2006) pp. 858-880. · Zbl 1126.03052
[5] Brézis, H., Analyse Fonctionnelle: Théorie et applications, Dunod, Paris, 1999.
[6] A. Buffa, M. Costabel, and C. Schwab. Boundary element methods for Maxwell’s equations on non-smooth domains. Numerische Mathematik, 92(4): 679-710, 2002. · Zbl 1019.65094
[7] A. Buffa, R. Hiptmair, T. Petersdorff, and C. Schwab. Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numerische Mathematik, 95(3): 459-485, 2003. · Zbl 1071.65160
[8] C. Chu, P. Stoffa. Implicit finite-difference simulations of seismic wave propagation, Geophysics, 77(2): T57-T67, 2012.
[9] C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York, 1978. · Zbl 0406.41003
[10] G. C. Diwan, M. S. Mohamed, M. Seaïd, J. Trevelyan and O. Laghrouche, Mixed enrichment for the finite element method in heterogeneous media. Int. J. Numer. Meth. Engng. 101(1), 54-78 (2015). · Zbl 1352.74344
[11] M. Drolia, M. S. Mohamed, O. Laghrouche, M. Seaïd and J. Trevelyan, Enriched finite element method for initial-value problem of transverse electromagnetic waves in time domain. Computer & Structures. 101(1), 54-78 (2016). · Zbl 1352.74344
[12] Jin-Fa Lee, Robert Lee and Andreas Cangellaris. Time-Domain Finite-Element Methods. IEEE Transactions on Antennas and Propagation, Vol. 45, NO. 3, 430-442, 1997. · Zbl 0945.78009
[13] Y-Q. Li and H-C. Zhou. Experimental study on acoustic vector tomography of 2-D flow field in an experiment-scale furnace. Flow Meas. Instrum.. 17: 113-122, 2006.
[14] Ken Mattsson, Frank Ham and Gianluca Iaccarino. Stable and accurate wave-propagation in discountinuous media. J. Comput. Physics. 227: 8753-8767, 2008. · Zbl 1151.65070
[15] MATTHEW N. O. SADIKU Numerical Techniques in ELECTROMAGNETICS with MATLAB. CRC Press Taylor & Francis Group, Third Edition, New Jersey, 1973.
[16] Frank Natterer. Reflection imaging without low frequencies. Inverse Problems. 27: 1-6, 2011. · Zbl 1211.35278
[17] M. H. Schultz and R. S. Varga. L-splines. Numer. Math.. 10: 345-369, 1967. · Zbl 0183.44402
[18] M. H. Schultz. Splines Analysis. Prentice-Hall, Englewood cliffs, New Jersey, 1973. · Zbl 0333.41009
[19] H. Sielschott. Measurement of horizontal flow in a large scale furnace using acoustic vector tomography. Flow Meas. Instrum. 8: 191-197, 1997.
[20] Lions, J. L., and Magenes, E., Non-homogeneous Boundary Value Problems and Applications, Vol. I, Springer, New York, 1972. · Zbl 0223.35039
[21] E. Perrey-Debain, J. Trevelyan, and P. Bettess. Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications. Journal of Sound and Vibration, 261: 839-858, 2003. · Zbl 1237.74107
[22] E. Perrey-Debain, J. Trevelyan, and P. Bettess. Use of wave boundary elements for acoustic computations. Journal of Computational Acoustics, 11: 305-321, 2003. · Zbl 1360.76171
[23] E. Perrey-Debain, J. Trevelyan, and P. Bettess. Wave boundary elements: a theoretical overview presenting applications in scattering of short waves. Engineering Analysis with Boundary Elements, 28: 131-141, 2004. · Zbl 1116.76399
[24] H.C. Pocklington. Electrical oscillation in wire. Cambridge Phil. Soc. Proc., Vol.9: 324-332, 1897. · JFM 28.0785.01
[25] A. Quarteroni and A. Valli. Numerical approximation of partial differential equation. Springer-Verlag, Berlin, 1994. · Zbl 0803.65088
[26] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielson, K.-A. Mardal and A. Tveito. Computing the Electrical Activity in the Heart. Monographs in Computational Science and Engineering, Springer-Verlag, Berlin Heidelberg, 2010.
[27] Sambit Das, Wenyuan Liao and Aniruch Gupta. An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation. J. Comput. Appl. Math. 270: 571-583, 2014. · Zbl 1321.65134
[28] Wenyuan Liao. On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation. J. Comput. Appl. Math. 258: 151-167, 2014. · Zbl 1294.65087
[29] Youneng Ma, Jinhua Yu and Yuanyuan Wang. An efficient complex-frequency shifted-perfectly matched layer for second-order acoustic wave equation. Int. J. meth. Engng. 97: 130-148, 2014. · Zbl 1352.74473
[30] K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenas Propag. 14: 302-307, 1966. · Zbl 1155.78304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.