×

Stable and accurate wave-propagation in discontinuous media. (English) Zbl 1151.65070

Summary: A time stable discretization is derived for the second-order wave equation with discontinuous coefficients. The discontinuity corresponds to inhomogeneity in the underlying medium and is treated by splitting the domain. Each (homogeneous) subdomain is discretized using narrow-diagonal summation by parts operators and, then, patched to its neighbors by using a penalty method, leading to fully explicit time integration. This discretization yields a time stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension using high-order finite difference discretizations, and in three-dimensions using an unstructured finite volume discretization.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation
35R05 PDEs with low regular coefficients and/or low regular data
Full Text: DOI

References:

[1] Bamberger, A.; Glowinski, R.; Tran, Q. H., A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal., 34, 2, 603-639 (1997) · Zbl 0877.35066
[2] Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E., A fourth order accurate finite difference scheme for the computation of elastic waves, Bull. Seismol. Soc. Amer., 76, 4, 1115-1132 (1986)
[3] Calabrese, G., Finite differencing second order systems describing black holes, Phys. Rev. D, 71, 027501 (2005)
[4] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes, J. Comput. Phys., 111, 2 (1994) · Zbl 0832.65098
[5] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes, J. Comput. Phys., 111, 2 (1994) · Zbl 0832.65098
[6] Carpenter, M. H.; Nordström, J.; Gottlieb, D., A stable and conservative interface treatment of arbitrary spatial accuracy, J. Comput. Phys., 148 (1999) · Zbl 0921.65059
[7] Cohen, G.; Joly, P., Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media, SIAM J. Numer. Anal., 33, 4, 1266-1302 (1996) · Zbl 0863.65048
[8] Grote, M.; Schneebeli, A.; Schötzau, D., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44, 2408-2431 (2006) · Zbl 1129.65065
[9] Grote, M.; Schneebeli, A.; Schötzau, D., Interior penalty discontinuous Galerkin method for Maxwell’s equations: energy norm error estimates, J. Comput. Appl. Math., 204, 375-386 (2007) · Zbl 1136.78014
[10] Gustafsson, B.; Kreiss, H. O.; Sundström, A., Stability theory of difference approximations for mixed initial boundary value problems, Math. Comp., 26, 119 (1972) · Zbl 0293.65076
[11] Gustafsson, B.; Mossberg, E., Time compact high order difference methods for wave propagation, SIAM J. Sci. Comput., 26, 259-271 (2004) · Zbl 1075.65112
[12] Gustafsson, B.; Wahlund, P., Time compact difference methods for wave propagation in discontinuous media, SIAM J. Sci. Comput., 26, 272-293 (2004) · Zbl 1077.65092
[13] Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 47-106 (1999) · Zbl 0940.65108
[14] Ham, F.; Mattsson, K.; Iaccarino, G.; Moin, P., Towards time-stable and accurate LES on unstructured grids, Lect. Notes Comput. Sci. Eng., 56, 235-250 (2007) · Zbl 1303.76036
[15] Kelly, K. R.; Ward, R. W.; Treitel, S.; Alford, R. M., Synthetic seismograms: a finite difference approach, Geophysics, 41, 2-27 (1976)
[16] Kreiss, H.-O.; Petersson, N. A., An embedded boundary method for the wave equation with discontinuous coefficients, SIAM J. Sci. Comput., 28, 2054-2074 (2006) · Zbl 1131.65075
[17] Kreiss, H.-O.; Petersson, N. A., A second order accurate embedded boundary method for the wave equation with dirichlet data, SIAM J. Sci. Comput., 27, 1141-1167 (2006) · Zbl 1095.65086
[18] Kreiss, H.-O.; Petersson, N. A.; Yström, J., Difference approximations for the second order wave equation, SIAM J. Numer. Anal., 40, 1940-1967 (2002) · Zbl 1033.65072
[19] Kreiss, H.-O.; Petersson, N. A.; Yström, J., Difference approximations of the Neumann problem for the second order wave equation, SIAM J. Numer. Anal., 42, 1292-1323 (2004) · Zbl 1077.65097
[20] Kreiss, H.-O.; Scherer, G., Finite element and finite difference methods for hyperbolic partial differential equations, Mathematical Aspects of Finite Elements in Partial Differential Equations (1974), Academic Press, Inc. · Zbl 0355.65085
[21] Kreiss, Heinz-Otto; Oliger, Joseph, Comparison of accurate methods for the integration of hyperbolic equations, Tellus, XXIV, 3 (1972)
[22] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[23] Mattsson, K.; Nordström, J., Summation by parts operators for finite difference approximations of second derivatives, J. Comput. Phys., 199, 2, 503-540 (2004) · Zbl 1071.65025
[24] Mattsson, K.; Nordström, J., High order finite difference methods for wave propagation in discontinuous media, J. Comput. Phys., 220, 249-269 (2006) · Zbl 1158.65333
[25] Mattsson, K.; Svärd, M.; Shoeybi, M., Stable and accurate schemes for the compressible Navier-Stokes equations, J. Comput. Phys., 227, 4, 2293-2316 (2008) · Zbl 1132.76039
[26] Nordström, J.; Mattsson, K.; Swanson, R. C., Boundary conditions for a divergence free velocity-pressure formulation of the incompressible Navier-Stokes equations, J. Comput. Phys., 225, 874-890 (2007) · Zbl 1118.76046
[27] Nycander, J., Tidal generation of internal waves from a periodic array of steep ridges, J. Fluid Mech., 567, 415-432 (2006) · Zbl 1104.76043
[28] Olsson, P., Summation by parts, projections, and stability I, Math. Comp., 64, 1035 (1995) · Zbl 0828.65111
[29] Olsson, P., Summation by parts, projections, and stability II, Math. Comp., 64, 1473 (1995) · Zbl 0848.65064
[30] Shubin, G. R.; Bell, J. B., A modified equation approach to constructing fourth order methods for acoustic wave propagation, SIAM J. Sci. Stat. Comput., 8, 2, 135-151 (1987) · Zbl 0611.76091
[31] Strand, B., Summation by parts for finite difference approximations for d/d \(x\), J. Comput. Phys., 110, 47-67 (1994) · Zbl 0792.65011
[32] Svärd, M.; Nordström, J., On the order of accuracy for difference approximations of initial-boundary value problems, J. Comput. Phys., 218, October, 333-352 (2006) · Zbl 1123.65088
[33] Szilagyl, B.; Kreiss, H.-O.; Winicour, J. W., Modeling the black hole excision problem, Phys. Rev. D, 71, 104035 (2005)
[34] Tsynkov, S. V., Numerical solution of problems on unbounded domains. a review, Appl. Numer. Math., 465-532 (1998) · Zbl 0939.76077
[35] Virieux, J., Sh-wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics, 49, 1933-1957 (1984)
[36] Virieux, J., P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics, 51, 889-901 (1986)
[37] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302-307 (1966) · Zbl 1155.78304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.