×

A comprehensive review of the recent numerical methods for solving FPDEs. (English) Zbl 07903488

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
65N99 Numerical methods for partial differential equations, boundary value problems
65T60 Numerical methods for wavelets
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
35C05 Solutions to PDEs in closed form
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35R10 Partial functional-differential equations

References:

[1] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2001), no. 4, 367-386, DOI: https://doi.org/10.48550/arXiv.math/0110241. · Zbl 1042.26003
[2] R. E. Gutierrez, J. M. Rosário, and J. Tenreiro Machado, Fractional order calculus: basic concepts and engineering applications, Math. Probl. Eng. 2010 (2010), 375858, DOI: https://doi.org/10.1155/2010/375858. · Zbl 1190.26002
[3] M. H. Tavassoli, A. Tavassoli, and M. O. Rahimi, The geometric and physical interpretation of fractional order derivatives of polynomial functions, Differ. Geom. Dyn. Syst. 15 (2013), 93-104, http://www.mathem.pub.ro/dgds/v15/D15-ta.pdf. · Zbl 1488.26027
[4] B. Guo, X. Pu, and F. Huang, Fractional Partial Differential Equations and their Numerical Solutions, World Scientific, Singapore, 2015. · Zbl 1335.35001
[5] A. Ahmadi, A. M. Amani, and F. A. Boroujeni, Fractional-order IMC-PID controller design for fractional-order time delay processes, 2020 28th Iranian Conference on Electrical Engineering (ICEE), Math. Probl. Eng., 2020, pp. 1-6, DOI: https://doi.org/10.1109/ICEE50131.2020.9261041.
[6] R. Khalil, M. Al Horani, and M. A. Hammad, Geometric meaning of conformable derivative via fractional cords, J. Math. Comput. Sci. 19 (2019), no. 4, 241-245, DOI: http://doi.org/10.22436/jmcs.019.04.03.
[7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. · Zbl 1092.45003
[8] V. Daftardar-Gejji, Fractional Calculus and Fractional Differential Equations, Springer, Berlin, 2019.
[9] I. Podlubny, Fractional: An Introduction to Fractional Derivatives, Fractional, to Methods of their Solution and Some of Their Applications, Elsevier, San Diego, 1998.
[10] B. Ross, Fractional Calculus and its Applications; Proceedings of the International Conference Held at the University of New Haven, June 1974, Springer-Verlag, Berlin, 2006. · Zbl 0293.00010
[11] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int. 13 (1967), no. 5, 529-539, DOI: https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.
[12] F. Jarad, T. Abdeljawad, and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differential Equations 2012 (2012), 1-8, DOI: https://doi.org/10.1186/1687-1847-2012-142. · Zbl 1346.26002
[13] L. Beghin, R. Garra, and C. Macci, Correlated fractional counting processes on a finite-time interval, J. Appl. Probab. 52 (2015), no. 4, 1045-1061, DOI: https://doi.org/10.1239/jap/1450802752. · Zbl 1337.60061
[14] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015), no. 2, 73-85, https://www.naturalspublishing.com/files/published/0gb83k287mo759.pdf.
[15] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci. 20 (2016), 763-769, DOI: https://doi.org/10.48550/arXiv.1602.03408.
[16] T. Abdeljawad and A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl. 2017 (2017), 1-11, DOI: http://doi.org/10.1186/s13660-017-1400-5. · Zbl 1368.26003
[17] R. Gorenflo, Y. Luchko, and F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. 2 (2007), no. 4, 383-414, DOI: https://doi.org/10.48550/arXiv.math-ph/0701069. · Zbl 1027.33006
[18] F. Mainardi, A. Mura, and G. Pagnini, The M-Wright function in time-fractional diffusion processes: a tutorial survey, Int. J. Differential Equations 2010 (2010), 104505, https://arxiv.org/pdf/1004.2950.pdf. · Zbl 1222.60060
[19] I. Petrás, Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab, IntechOpen, 2011.
[20] M. R. Spiegel, Schaumas Outline of Theory and Problems of Laplace Transforms, Schaums Outline Series, McGraw-Hill, New York, 1965.
[21] S. Maitama and W. Zhao, New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations, Int. J. Anal. Appl. 17 (2019), no. 2, 167-190, DOI: https://doi.org/10.28924/2291-8639-17-2019-167. · Zbl 1412.44001
[22] G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Educ. Sci. Technol. 24 (1993), no. 1, 35-43, DOI: http://doi.org/10.1080/0020739930240105. · Zbl 0768.44003
[23] T. M. Elzaki, The new integral transform Elzaki transform, Glob. J. Pure Appl. Math. 7 (2011), no. 1, 57-64.
[24] F. Haroon, S. Mukhtar, and R. Shah, Fractional view analysis of Fornberg-Whitham equations by using Elzaki transform, Symmetry 14 (2022), no. 10, 2118, DOI: http://doi.org/10.3390/sym14102118.
[25] R. Belgacem, D. Baleanu, and A. Bokhari, Shehu transform and applications to Caputo-fractional differential equations, Int. J. Anal. Appl. 17 (2019), no. 6, 917-927, DOI: https://doi.org/10.28924/2291-8639-17-2019-917.
[26] M. Meddahi, J. Hossein, and M. N. Ncube, New general integral transform via Atangana-Baleanu derivatives, Adv. Differential Equations 2021 (2021), no. 385, 1-14, DOI: https://doi.org/10.1186/s13662-021-03540-4. · Zbl 1496.44004
[27] D. Valério, M. D. Ortigueira, and A. M. Lopes, How many fractional derivatives are there?, Mathematics 10 (2022), no. 5, 737, DOI: https://doi.org/10.3390/math10050737.
[28] M. D. Ortigueira and J. T. Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4-13, DOI: https://doi.org/10.1016/j.jcp.2014.07.019. · Zbl 1349.26016
[29] M. Ortigueira and J. Machado, Which derivative?, Fractal Fract. 1 (2017), no. 1, 3, DOI: https://doi.org/10.3390/fractalfract1010003.
[30] J. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 2 (1997), no. 4, 230-235, DOI: https://doi.org/10.1016/S1007-5704(97)90007-1.
[31] J. H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech. 34 (1999), no. 4, 699-708, DOI: http://doi.org/10.1016/S0020-7462(98)00048-1. · Zbl 1342.34005
[32] A. Prakash, M. Goyal, and S. Gupta, Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation, Nonlinear Eng. 8 (2019), no. 1, 164-171, DOI: https://doi.org/10.1515/nleng-2018-0001.
[33] S. Gupta, Numerical simulation of time-fractional Black-Scholes equation using fractional variational iteration method, J. Comput. Math. Sci. 9 (2019), no. 9, 1101-1110.
[34] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988), no. 2, 501-544, DOI: http://doi.org/10.1016/0022-247X(88)90170-9. · Zbl 0671.34053
[35] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Springer Science & Business Media, New York, 2013.
[36] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, Shanghai, 1992.
[37] S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004), no. 2, 499-513, DOI: http://doi.org/10.1016/S0096-3003(02)00790-7. · Zbl 1086.35005
[38] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, Boca Raton, 2003.
[39] H. Qu, Z. She, and X. Liu, Homotopy analysis method for three types of fractional partial differential equations, Complexity 2020 (2020), 7232907, DOI: https://doi.org/10.1155/2020/7232907. · Zbl 1450.35278
[40] U. Saeed and M. ur Rehman Hermite wavelet method for fractional delay differential equations, J. Differential Equations 2014 (2014), 359093, DOI: https://doi.org/10.1155/2014/359093.
[41] S. S. Ray and A. K. Gupta, A numerical investigation of time-fractional modified Fornberg-Whitham equation for analyzing the behavior of water waves, Appl. Math. Comput. 266 (2015), 135-148, DOI: https://doi.org/10.1016/j.amc.2015.05.045. · Zbl 1410.76034
[42] B. He, Q. Meng, and S. Li, Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation, Appl. Math. Comput. 217 (2010), no. 5, 1976-1982, DOI: https://doi.org/10.1016/j.amc.2010.06.055. · Zbl 1202.35190
[43] E. Salah, R. Saadeh, A. Qazza, and R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms 12 (2023), no. 2, 111, DOI: https://doi.org/10.3390/axioms12020111.
[44] A. Qazza, R. Saadeh, and E. Salah, Solving fractional partial differential equations via a new scheme, AIMS Math. 8 (2023), no. 3, 5318-5337, DOI: https://doi.org/10.3934/math.2023267.
[45] J. Akter and M. A. Akbar, Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method, Results in Phys. 5 (2015), 125-130, DOI: https://doi.org/10.1016/j.rinp.2015.01.008.
[46] H. Bin Jebreen and C. Cattani, Solving time-fractional partial differential equation using Chebyshev cardinal functions, Axioms 11 (2022), no. 11, 642, DOI: https://doi.org/10.3390/axioms11110642.
[47] M. Uddin and S. Haq, RBFs approximation method for time fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 11, 4208-4214, DOI: https://doi.org/10.1016/j.cnsns.2011.03.021. · Zbl 1220.65145
[48] Z. Odibat and S. Momani, The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl. 58 (2009), no. 11-12, 2199-2208, DOI: https://doi.org/10.1016/j.camwa.2009.03.009. · Zbl 1189.65254
[49] N. A. Shah, I. Dassios, E. R. El-Zahar, J. D. Chung, and S. Taherifar, The variational iteration transform method for solving the time-fractional Fornberg-Whitham equation and comparison with decomposition transform method, Mathematics 9 (2021), no. 2, 141, DOI: http://doi.org/10.3390/math9020141.
[50] B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 289 (1978), no. 1361, 373-404, DOI: https://doi.org/10.1098/rsta.1978.0064. · Zbl 0384.65049
[51] R. Zhang, N. A. Shah, E. R. El-Zahar, A. Akgül, and J. D. Chung, Numerical analysis of fractional-order Emden-Fowler equations using modified variational iteration method, Fractals 31 (2023), no. 2, 2340028, DOI: https://doi.org/10.1142/S0218348X23400285. · Zbl 1518.35655
[52] N. Iqbal, H. Yasmin, A. Ali, A. Bariq, M. M. Al-Sawalha, and W. W. Mohammed, Numerical methods for fractional-order Fornberg-Whitham equations in the sense of Atangana-Baleanu derivative, J. Funct. Spaces 2021 (2021), 2197247, DOI: http://dx.doi.org/10.1155/2021/2197247. · Zbl 07452481
[53] D. Kumar, J. Singh, and D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, Eur. Phys. J. Plus 133 (2018), 70, DOI: http://doi.org/10.1140/epjp/i2018-11934-y.
[54] A. H. Ganie, M. M. AlBaidani, and A. Khan, A comparative study of the fractional partial differential equations via novel transform, Symmetry 15 (2023), no. 5, 1101, DOI: http://doi.org/10.3390/sym15051101.
[55] K. Shah, A. R. Seadawy, and A. B. Mahmoud, On theoretical analysis of nonlinear fractional order partial Benney equations under nonsingular kernel, Open Phys. 20 (2022), no. 1, 587-595, DOI: https://doi.org/10.1515/phys-2022-0046.
[56] M. Sunitha, F. Gamaoun, A. Abdulrahman, N. S. Malagi, S. Singh, R. J. Gowda, et al., An efficient analytical approach with novel integral transform to study the two-dimensional solute transport problem, Ain Shams Eng. J. 14 (2023), no. 3, 101878, DOI: http://doi.org/10.1016/j.asej.2022.101878.
[57] R. Shah, Y. Alkhezi, and K. Alhamad, An analytical approach to solve the fractional Benney equation using the q-homotopy analysis transform method, Symmetry 15 (2023), no. 3, 669, DOI: http://doi.org/10.3390/sym15030669.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.