×

The probabilistic scaling paradigm. (English) Zbl 07903084

Summary: In this note we further discuss the probabilistic scaling introduced by the authors in [“Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two”, Preprint, arXiv:1910.08492] and [Invent. Math. 228, No. 2, 539–686 (2022; Zbl 1506.35208)]. In particular we do a case study comparing the stochastic heat equation, the nonlinear wave equation and the nonlinear Schrödinger equation.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q60 PDEs in connection with optics and electromagnetic theory
35Q79 PDEs in connection with classical thermodynamics and heat transfer
35R60 PDEs with randomness, stochastic partial differential equations
15A69 Multilinear algebra, tensor calculus
15B52 Random matrices (algebraic aspects)
37E20 Universality and renormalization of dynamical systems
60H30 Applications of stochastic analysis (to PDEs, etc.)
60H40 White noise theory
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35R25 Ill-posed problems for PDEs

Citations:

Zbl 1506.35208

References:

[1] Aizenman, M., Geometric analysis of \(\Phi^4\) fields and Ising models. Parts I and II, Commun. Math. Phys., 86, 1-48, 1982 · Zbl 0533.58034 · doi:10.1007/BF01205659
[2] Aizenman, M.; Duminil-Copin, H., Marginal triviality of the scaling limits of critical 4D Ising and \(\lambda \phi_4^4\) models, Ann. Math. (2), 194, 163-235, 2021 · Zbl 1489.60150 · doi:10.4007/annals.2021.194.1.3
[3] Albeverio, S., Kusuoka, S.: The invariant measure and the flow associated to the \(\Phi^4_3\)-quantum field model. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20, 1359-1427 (2020) · Zbl 1480.81079
[4] Barashkov, N.; Gubinelli, M., A variational method for \(\Phi_3^4\), Duke Math. J., 169, 3339-3415, 2020 · Zbl 1508.81928 · doi:10.1215/00127094-2020-0029
[5] Barashkov, N.; Gubinelli, M., The \(\Phi_3^4\) measure via Girsanov’s theorem, Electron. J. Probab., 26, 1-29, 2021 · Zbl 1469.81040 · doi:10.1214/21-EJP635
[6] Bényi, Á.; Oh, T.; Pocovnicu, O., On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(\mathbb{R}^d, d\ge 3\), Trans. Amer. Math. Soc. Ser. B, 2, 1-50, 2015 · Zbl 1339.35281 · doi:10.1090/btran/6
[7] Bourgain, J., Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166, 1-26, 1994 · Zbl 0822.35126 · doi:10.1007/BF02099299
[8] Bourgain, J., Invariant measures for the \(2D\)-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176, 421-445, 1996 · Zbl 0852.35131 · doi:10.1007/BF02099556
[9] Bourgain, J.: Nonlinear Schrödinger equations. In: Hyperbolic Equations and Frequency Interactions (Park City, UT, 1995). IAS/Park City Math. Ser., vol. 5, pp. 3-157. Amer. Math. Soc., Providence, RI (1999) · Zbl 0952.35127
[10] Bringmann, B., Deng, Y., Nahmod, A., Yue, H.: Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation. arXiv:2205.03893 (2022)
[11] Buckmaster, T.; Germain, P.; Hani, Z.; Shatah, J., Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation, Invent. Math., 225, 787-855, 2021 · Zbl 1484.35345 · doi:10.1007/s00222-021-01039-z
[12] Catellier, R.; Chouk, K., Paracontrolled distributions and the 3-dimensional stochastic quantization equation, Ann. Probab., 46, 2621-2679, 2018 · Zbl 1433.60048 · doi:10.1214/17-AOP1235
[13] Collot, C., Germain, P.: On the derivation of the homogeneous kinetic wave equation. arXiv:1912.10368 (2019)
[14] Collot, C., Germain, P.: Derivation of the homogeneous kinetic wave equation: longer time scales. arXiv:2007.03508 (2020)
[15] Da Prato, G.; Debussche, A., Strong solutions to the stochastic quantization equations, Ann. Probab., 31, 1900-1916, 2003 · Zbl 1071.81070 · doi:10.1214/aop/1068646370
[16] Dean, K.: Private communication
[17] Deng, Y.; Hani, Z., On the derivation of the wave kinetic equation for NLS, Forum Math. Pi, 9, e6, 2021 · Zbl 1479.35771 · doi:10.1017/fmp.2021.6
[18] Deng, Y.; Hani, Z., Full derivation of the wave kinetic equation, Invent. Math., 233, 543-724, 2023 · Zbl 1530.35276 · doi:10.1007/s00222-023-01189-2
[19] Deng, Y., Hani, Z.: Propagation of chaos and the higher order statistics in the wave kinetic theory. arXiv:2110.04565 (2021)
[20] Deng, Y., Hani, Z.: Derivation of the wave kinetic equation: full range of scaling laws. arXiv:2301.07063 (2023)
[21] Deng, Y., Nahmod, A., Yue, H.: Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two. arXiv:1910.08492 (2019)
[22] Deng, Y.; Nahmod, AR; Yue, H., Random tensors, propagation of randomness, and nonlinear dispersive equations, Invent. Math., 228, 539-686, 2022 · Zbl 1506.35208 · doi:10.1007/s00222-021-01084-8
[23] Deng, Y.; Nahmod, AR; Yue, H., Invariant Gibbs measure and global strong solutions for the Hartree NLS equation in dimension three, J. Math. Phys., 62, 031514, 2021 · Zbl 1461.81029 · doi:10.1063/5.0045062
[24] Friedlander, L., An invariant measure for the equation \(u_{tt}-u_{xx}+u^3=0\), Commun. Math. Phys., 98, 1-16, 1985 · Zbl 0576.35082 · doi:10.1007/BF01211041
[25] Fröhlich, J., On the triviality of \(\lambda \Phi_d^4\) theories and the approach to the critical point in \(d_{(-)}>4\) dimensions, Nuclear Phys. B, 200, 281-296, 1982 · doi:10.1016/0550-3213(82)90088-8
[26] Glimm, J.; Jaffe, A., Quantum Physics: A Functional Integral Point of View, 1987, New York: Springer-Verlag, New York · doi:10.1007/978-1-4612-4728-9
[27] Gubinelli, M.; Hofmanová, M., A PDE construction of the Euclidean \(\Phi_3^4\) quantum field theory, Commun. Math. Phys., 384, 1-75, 2021 · Zbl 1514.81190 · doi:10.1007/s00220-021-04022-0
[28] Gubinelli, M.; Imkeller, P.; Perkowski, N., Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3, e6, 2015 · Zbl 1333.60149 · doi:10.1017/fmp.2015.2
[29] Gubinelli, M.; Koch, H.; Oh, T., Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity, J. Eur. Math. Soc., 2023 · Zbl 1537.35434 · doi:10.4171/JEMS/1294
[30] Hairer, M., A theory of regularity structures, Invent. Math., 198, 269-504, 2014 · Zbl 1332.60093 · doi:10.1007/s00222-014-0505-4
[31] Hairer, M., Introduction to regularity structures, Braz. J. Probab. Stat., 29, 175-210, 2015 · Zbl 1316.81061 · doi:10.1214/14-BJPS241
[32] Hairer, M.; Matetski, K., Discretisations of rough stochastic PDEs, Ann. Probab., 46, 1651-1709, 2018 · Zbl 1406.60094 · doi:10.1214/17-AOP1212
[33] Iwata, K., An infinite dimensional stochastic differential equation with state space \(C(\mathbb{R} )\), Probab. Theory Related Fields, 74, 141-159, 1987 · Zbl 0587.60044 · doi:10.1007/BF01845644
[34] Lebowitz, JL; Rose, RA; Speer, ER, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., 50, 657-687, 1988 · Zbl 0925.35142 · doi:10.1007/BF01026495
[35] Lührmann, J.; Mendelson, D., Random data Cauchy theory for nonlinear wave equations of power type on \(\mathbb{R}^3\), Commun. Partial Differ. Equ., 39, 2262-2283, 2014 · Zbl 1304.35788 · doi:10.1080/03605302.2014.933239
[36] Liu, R., On the probabilistic well-posedness of the two-dimensional periodic nonlinear Schrödinger equation with the quadratic nonlinearity \(|u|^2\), J. Math. Pures Appl., 171, 75-101, 2023 · Zbl 1507.35259 · doi:10.1016/j.matpur.2022.12.010
[37] Moinat, A.; Weber, H., Space-time localisation for the dynamic \(\Phi_3^4\) model, Commun. Pure Appl. Math., 73, 2519-2555, 2020 · Zbl 1455.35309 · doi:10.1002/cpa.21925
[38] Mourrat, J-C; Weber, H., The dynamic \(\Phi^4_3\) model comes down from infinity, Commun. Math. Phys., 356, 673-753, 2017 · Zbl 1384.81068 · doi:10.1007/s00220-017-2997-4
[39] Mourrat, J-C; Weber, H., Global well-posedness of the dynamic \(\Phi^4\) model in the plane, Ann. Probab., 45, 2398-2476, 2017 · Zbl 1381.60098 · doi:10.1214/16-AOP1116
[40] Nelson, E.: A quartic interaction in two dimensions. In: Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), pp. 69-73. M.I.T. Press, Cambridge, Mass. (1966)
[41] Oh, T., Okamoto, M.: Comparing the stochastic nonlinear wave and heat equations: a case study. (2019) arXiv:1908.03490
[42] Oh, T., Okamoto, M., Tolomeo, L.: Stochastic quantization of the \(\Phi^3_3\)-model. (2021) arXiv:2108.06777
[43] Oh, T.; Thomann, L., Invariant Gibbs measures for the \(2-d\) defocusing nonlinear wave equations, Ann. Fac. Sci. Toulouse Math., 6, 29, 1-26, 2020 · Zbl 1443.35101 · doi:10.5802/afst.1620
[44] Parisi, G.; Wu, YS, Perturbation theory without gauge fixing, Sci. Sinica, 24, 483-496, 1981 · Zbl 1480.81051
[45] Peierls, R., Zur kinetischen Theorie der Wärmeleitung in Kristallen, Ann. Phys., 395, 1055-1101, 1929 · JFM 55.0547.01 · doi:10.1002/andp.19293950803
[46] Weber, H.: Private communication
[47] Zhang, T.; Fang, D., Random dada Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid. Mech., 14, 311-324, 2012 · Zbl 1294.35076 · doi:10.1007/s00021-011-0069-7
[48] Zhidkov, PE, An invariant measure for a nonlinear wave equation, Nonlinear Anal., 22, 319-325, 1994 · Zbl 0803.35098 · doi:10.1016/0362-546X(94)90023-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.