×

Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description. (English) Zbl 07902819

Summary: The Weyl group of a crystallographic root system has a multiplicative action on the compact torus. The orbit space of this action is a compact basic semi-algebraic set. We present a polynomial description of this set for the Weyl groups associated to root systems of types A, B, C, D, and G. Our description is given through a polynomial matrix inequality. The novelty lies in an approach via Hermite quadratic forms and a closed form formula for the matrix entries. The orbit space of the multiplicative Weyl group action is the orthogonality region of generalized Chebyshev polynomials. In this polynomial basis, we show that the matrices obtained for the five types follow the same, surprisingly simple pattern. This is applied to the optimization of trigonometric polynomials with crystallographic symmetries.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
14P10 Semialgebraic sets and related spaces
17B22 Root systems
33C52 Orthogonal polynomials and functions associated with root systems

References:

[1] Bachoc, C., Decorte, E., de Oliviera Filho, F., and Vallentin, F., Spectral bounds for the independence ratio and the chromatic number of an operator, Israel J. Math., 202 (2014), pp. 227-254. · Zbl 1302.05047
[2] Beerends, R., Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator, Trans. Amer. Math. Soc., 328 (1991), pp. 779-814. · Zbl 0739.22008
[3] Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbresde Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968. · Zbl 0165.56403
[4] Blekherman, G., Parrilo, P. A., and Thomas, R. R., eds., Semidefinite Optimization and Convex Algebraic Geometry, , SIAM, Philadelphia, 2013. · Zbl 1260.90006
[5] Bai, X., Wei, H., Fujisawa, K., and Wang, Y., Semidefinite programming for optimal power flow problems, Int. J. Electrical Power Energy Syst., 30 (2008), pp. 383-392.
[6] Cox, D., Little, J., and O’Shea, D., Using Algebraic Geometry, 2nd ed., , Springer, New York, 2005. · Zbl 1079.13017
[7] Cox, D., Little, J., and O’Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, , Springer, New York, 2015. · Zbl 1335.13001
[8] Conway, J. and Sloane, N., Sphere Packings, Lattices and Groups, 3rd ed., , Springer-Verlag, New York, 1999. · Zbl 0915.52003
[9] Dunn, K. and Lidl, R., Multi-dimensional generalizations of the Chebyshev polynomials, I, II, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), pp. 154-165. · Zbl 0452.33013
[10] Dym, H. and McKean, H., Fourier Series and Integrals, , Elsevier Science, 1985. · Zbl 0606.42001
[11] Dumitrescu, B., Positive Trigonometric Polynomials and Signal Processing Applications, , Springer, Cham, 2007. · Zbl 1126.93005
[12] Eier, R. and Lidl, R., A class of orthogonal polynomials in \(k\) variables, Math. Ann., 260 (1982), pp. 93-100. · Zbl 0474.33009
[13] Farkas, D., Multiplicative invariants, Enseign. Math., 30 (1984), pp. 141-157. · Zbl 0546.14003
[14] Háková, L., Hrivnák, J., and Motlochová, L., On cubature rules associated to Weyl group orbit functions, Acta Polytech., 56 (2016), pp. 202-213.
[15] Hubert, E., Metzlaff, T., Moustrou, P., and Riener, C., T-orbit spaces of multiplicative actions and applications, ACM Commun. Comput. Algebra, 56 (2022), pp. 72-75. · Zbl 07721521
[16] Hubert, E., Metzlaff, T., Moustrou, P., and Riener, C., Optimization of Trigonometric Polynomials with Crystallographic Symmetry and Spectral Bounds for Set Avoiding Graphs, preprint, hal-03768067, 2023.
[17] Hubert, E. and Singer, M., Sparse interpolation in terms of multivariate Chebyshev polynomials, Found. Comput. Math., 22 (2022), pp. 1801-1862. · Zbl 1504.13009
[18] Hoffman, M. and Withers, W., Generalized Chebyshev polynomials associated with affine Weyl groups, Trans. Amer. Math. Soc., 308 (1988), pp. 91-104. · Zbl 0681.33020
[19] Josz, C. and Molzahn, D., Lasserre hierarchy for large scale polynomial optimization in real and complex variables, SIAM J. Optim., 28 (2018), pp. 1017-1048, doi:10.1137/15M1034386. · Zbl 1395.90196
[20] Koornwinder, T., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, Indag. Math. (Proc.), 77 (1974), pp. 48-58. · Zbl 0263.33011
[21] Lasserre, J.-B., Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11 (2001), pp. 796-817, doi:10.1137/S1052623400366802. · Zbl 1010.90061
[22] Laurent, M., Sums of squares, moment matrices and optimization over polynomials, in Emerging Applications of Algeraic Geometry, Springer, New York, 2009, pp. 157-270. · Zbl 1163.13021
[23] Lorenz, M., Multiplicative Invariant Theory, , Springer, Berlin, Heidelberg, 2005. · Zbl 1078.13003
[24] Li, H., Sun, J., and Xu, Y., Discrete Fourier analysis, cubature, and interpolation on a hexagon and triangle, SIAM J. Numer. Anal., 46 (2008), pp. 1653-1681, doi:10.1137/060671851. · Zbl 1179.41002
[25] Li, H., Sun, J., and Xu, Y., Discrete Fourier analysis and Chebyshev polynomials with \(G_2\) group, SIGMA Symmetry Integrability Geom. Methods Appl., 8 (2012), pp. 67-96. · Zbl 1270.41002
[26] Li, H. and Xu, Y., Discrete Fourier analysis on fundamental domain and simplex of \(A_d\) lattice in \(d\) variables, J. Fourier Anal. Appl., 16 (2010), pp. 383-433. · Zbl 1194.42006
[27] MacDonald, I., Orthogonal polynomials associated with root systems, in Orthogonal Polynomials: Theory and Practice, , Springer, Dordrecht, The Netherlands, 1990, pp. 311-318. · Zbl 0699.42010
[28] Metzlaff, T., Groupes Cristallographiques et Polynômes de Chebyshev en Optimisation Globale, Thèse de doctorat en Mathématiques, dirigée par E. Hubert, Inria d’Université Côte d’Azur, theses.fr/2022COAZ4094, 2022.
[29] Munthe-Kaas, H., Nome, M., and Ryland, B., Through the kaleidoscope: Symmetries, groups and Chebyshev-approximations from a computational point of view, in Foundations of Computational Mathematics, Budapest 2011, , Cambridge University Press, Cambridge, UK, 2013, pp. 188-229. · Zbl 1316.65122
[30] Moody, R. and Patera, J., Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups, Adv. in Appl. Math., 47 (2011), pp. 509-535. · Zbl 1228.41025
[31] Procesi, C., Positive symmetric functions, Adv. in Math., 29 (1978), pp. 219-225. · Zbl 0383.12013
[32] Procesi, C. and Schwarz, G., Inequalities defining orbit spaces, Invent. Math., 81 (1985), pp. 539-554. · Zbl 0578.14010
[33] Steinberg, R., On a theorem of Pittie, Topology, 14 (1975), pp. 173-177. · Zbl 0318.22010
[34] Talamini, V., Generating formulas for finite reflection groups of the infinite series Sn, An, Bn and Dn, Rend. Circ. Mat. Palermo (2), 69 (2020), pp. 1043-1077. · Zbl 1470.20016
[35] Xu, Y., Generalized characteristic polynomials and Gaussian cubature rules, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1129-1142, doi:10.1137/140972810. · Zbl 1320.33020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.