×

Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator. (English) Zbl 0739.22008

Author’s abstract: Chebyshev polynomials of the first and the second kind in \(n\) variables \(z_ 1,z_ 2,\dots,z_ n\) are introduced. These variables are the characters of the representations of \(SL(n+1,\mathbb{C})\) corresponding to the fundamental weights. The classical Chebyshev polynomials \((\cos kt\) and \(\sin(k+1)t/\sin t\), respectively, as polynomials in \(z=2\cos t)\) are obtained for \(n=1\). The Chebyshev polynomials are eigenpolynomials of a second order linear partial differential operator, which is in fact the radial part of the Laplace- Beltrami operator on certain symmetric spaces. We give an explicit expression of this operator in the coordinates \(z_ 1,z_ 2,\dots,z_ n\), and then show how many results in the literature on differential equations satisfied by Chebyshev polynomals in several variables follow immediately from well-known results on the radial part of the Laplace- Beltrami operator. Related topics like orthogonality, symmetry relations, generating functions and recurrence relations are also discussed. Finally we note that the Chebyshev polynomials are a special case of a more general class of orthogonal polynomials in several variables.
Reviewer: F.Rouvière (Nice)

MSC:

22E30 Analysis on real and complex Lie groups
33C50 Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
43A75 Harmonic analysis on specific compact groups
Full Text: DOI

References:

[1] H. Bacry, Generalized Chebyshev polynomials and characters of \( GL(N,{\mathbf{C}})\) and \( SL(N,{\mathbf{C}})\), Group Theoretical Methods in Physics, Lecture Notes in Phys., vol. 201, Springer-Verlag, Berlin, 1984.
[2] -, An application of Laguerre’s emanent to generalized Chebyshev polynomials, Polynômes Orthogonaux et Applications, Lecture Notes in Math., vol. 1171, Springer-Verlag, Berlin, 1985.
[3] Henri Bacry, Zeros of polynomials and generalized Chebyshev polynomials, Group-theoretic methods in physics, Vol. 2 (Russian) (Jūrmala, 1985) ”Nauka”, Moscow, 1986, pp. 239 – 249.
[4] R. J. Beerends, The Abel transform and shift operators, Compositio Math. 66 (1988), no. 2, 145 – 197. · Zbl 0661.43006
[5] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). · Zbl 0186.33001
[6] -, Éléments de mathématique. Groupes et algèbres de Lie, Chapitres 7 et 8, Hermann, Paris, 1975. · Zbl 0329.17002
[7] Amédée Debiard, Polynômes de Tchébychev et de Jacobi dans un espace euclidien de dimension \?, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 13, 529 – 532 (French, with English summary). · Zbl 0557.33004
[8] Amédée Debiard, Système différentiel hypergéométrique de type \?\?_{\?}, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 13, 363 – 366 (French, with English summary). · Zbl 0616.33009 · doi:10.1007/BFb0078523
[9] -, Système différentiel hypergéométrique et parties radiales des opérateurs invariants des espaces symétriques de type \( B{C_p}\), Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math., vol. 1296, Springer-Verlag, Berlin, 1987.
[10] Amédée Debiard and Bernard Gaveau, Analysis on root systems, Canad. J. Math. 39 (1987), no. 6, 1281 – 1404. · Zbl 0647.22004 · doi:10.4153/CJM-1987-064-x
[11] K. B. Dunn and R. Lidl, Multidimensional generalizations of the Chebyshev polynomials. I, II, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 4, 154 – 159, 160 – 165. · Zbl 0452.33013
[12] Ken B. Dunn and Rudolf Lidl, Generalizations of the classical Chebyshev polynomials to polynomials in two variables, Czechoslovak Math. J. 32(107) (1982), no. 4, 516 – 528. · Zbl 0511.33008
[13] Richard Eier, Rudolf Lidl, and Ken B. Dunn, Differential equations for generalized Chebyshev polynomials, Rend. Mat. (7) 1 (1981), no. 4, 633 – 646 (English, with Italian summary). · Zbl 0487.33009
[14] Richard Eier and Rudolf Lidl, A class of orthogonal polynomials in \? variables, Math. Ann. 260 (1982), no. 1, 93 – 99. · Zbl 0474.33009 · doi:10.1007/BF01475757
[15] G. J. Heckman and E. M. Opdam, Root systems and hypergeometric functions. I, Compositio Math. 64 (1987), no. 3, 329 – 352. G. J. Heckman, Root systems and hypergeometric functions. II, Compositio Math. 64 (1987), no. 3, 353 – 373. · Zbl 0656.17006
[16] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. · Zbl 0451.53038
[17] Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. · Zbl 0543.58001
[18] Tom H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, Nederl. Akad. Wetensch. Proc. Ser. A 77=Indag. Math. 36 (1974), 48 – 58. Tom H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. II, Nederl. Akad. Wetensch. Proc. Ser. A 77=Indag. Math. 36 (1974), 59 – 66.
[19] Rudolf Lidl, Tschebyscheffpolynome in mehreren Variablen, J. Reine Angew. Math. 273 (1975), 178 – 198 (German). · Zbl 0298.33009 · doi:10.1515/crll.1975.273.178
[20] I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. · Zbl 0487.20007
[21] I. G. Macdonald, Commuting differential operators and zonal spherical functions, Algebraic groups Utrecht 1986, Lecture Notes in Math., vol. 1271, Springer, Berlin, 1987, pp. 189 – 200. · doi:10.1007/BFb0079238
[22] E. M. Opdam, Generalized hypergeometric functions associated with root systems, Thesis, Leiden, 1988. · Zbl 0669.33008
[23] P. E. Ricci, I polinomi di Tchebycheff in più variabili, Rend. Mat. 11 (1978), 295-327. · Zbl 0405.15012
[24] Jirō Sekiguchi, Zonal spherical functions on some symmetric spaces, Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976), 1976/77 supplement, pp. 455 – 459. · Zbl 0383.43005 · doi:10.2977/prims/1195196620
[25] J. J. Sylvester, On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure, The Collected Mathematical Papers, vol. I, Chelsea, New York, 1973.
[26] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. Prentice-Hall Series in Modern Analysis. · Zbl 0371.22001
[27] Lars Vretare, Formulas for elementary spherical functions and generalized Jacobi polynomials, SIAM J. Math. Anal. 15 (1984), no. 4, 805 – 833. · Zbl 0549.43006 · doi:10.1137/0515062
[28] H. Weber, Lehrbuch der Algebra, Zweite auflage, Vieweg, Braunschweig, 1898. · JFM 29.0064.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.