×

Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium. (English) Zbl 07902673

Summary: The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.

MSC:

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76E05 Parallel shear flows in hydrodynamic stability
76W05 Magnetohydrodynamics and electrohydrodynamics
76S05 Flows in porous media; filtration; seepage
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Nield, DA; Kuznetsov, AV, The onset of convection in a bidisperse porous medium, Int J Heat Mass Transfer, 49, 17-18, 3068-3074, 2006 · Zbl 1189.76205 · doi:10.1016/j.ijheatmasstransfer.2006.02.008
[2] Hooman, K.; Sauret, E.; Dahari, M., Theoretical modelling of momentum transfer function of bi-disperse porous media, Appl Therm Eng, 75, 867-870, 2015 · doi:10.1016/j.applthermaleng.2014.10.067
[3] Imani, G.; Hooman, K., Lattice Boltzmann pore scale simulation of natural convection in a differentially heated enclosure filled with a detached or attached bidisperse porous medium, Transp Porous Media, 116, 1, 91-113, 2017 · doi:10.1007/s11242-016-0766-z
[4] Straughan, B., Convection with local thermal non-equilibrium and microfluidic effects,, 2015, New York: Springer, New York · Zbl 1325.76005
[5] Straughan, B., Mathematical aspects of multi-porosity continua, 2017, Cham: Springer, Cham · Zbl 1390.74009 · doi:10.1007/978-3-319-70172-1
[6] Nield, DA; Kuznetsov, AV, A two-velocity two-temperature model for a bi-dispersed porous medium: forced convection in a channel, Transp Porous Media, 59, 3, 325-339, 2005 · doi:10.1007/s11242-004-1685-y
[7] Straughan, B., On the Nield-Kuznetsov theory for convection in bidispersive porous media, Transp Porous Media, 77, 2, 159-168, 2009 · doi:10.1007/s11242-008-9307-8
[8] Challoob, HA; Harfash, AJ; Harfash, AJ, Bidispersive thermal convection with relatively large macropores and generalized velocity and temperature boundary conditions, Phys Fluids, 33, 1, 2021 · doi:10.1063/5.0035938
[9] Challoob, HA; Harfash, AJ; Harfash, AJ, Bidispersive double diffusive convection with relatively large macropores and generalized boundary conditions, Phys Fluids, 33, 3, 2021 · doi:10.1063/5.0043340
[10] Badday, AJ; Harfash, AJ, Chemical reaction effect on convection in bidispersive porous medium, Transp Porous Media, 137, 2, 381-397, 2021 · doi:10.1007/s11242-021-01566-6
[11] Badday, AJ; Harfash, AJ, Stability of Darcy thermosolutal convection in bidispersive porous medium with reaction, Asia-Pac J Chem Eng, 16, 5, 2021 · doi:10.1002/apj.2682
[12] Badday, AJ; Harfash, AJ, Double-diffusive convection in bidispersive porous medium with chemical reaction and magnetic field effects, Transp Porous Media, 139, 1, 45-66, 2021 · doi:10.1007/s11242-021-01642-x
[13] Badday, AJ; Harfash, AJ, Thermosolutal convection in rotating bidispersive porous media with general boundary conditions, Spec Top Rev Porous Media, 13, 6, 29-48, 2022 · doi:10.1615/SpecialTopicsRevPorousMedia.2022044251
[14] Badday, AJ; Harfash, AJ, The effects of the soret and slip boundary conditions on thermosolutal convection with a Navier-Stokes-Voigt fluid, Phys Fluids, 35, 1, 2023 · doi:10.1063/5.0128993
[15] Afluk, ZA; Harfash, AJ, Stability and instability of darcy-bénard problem in bidispersive porous medium with an exothermic boundary reaction, Transp Porous Media, 150, 2, 359-382, 2023 · doi:10.1007/s11242-023-02015-2
[16] Hajool, SS; Harfash, AJ, Instability in poiseuille flow in a bidisperse porous medium with relatively large macropores, Spec Top Rev Porous Media, 15, 3, 27-42, 2024 · doi:10.1615/SpecialTopicsRevPorousMedia.2023048200
[17] Hajool, SS; Harfash, AJ, Hydrodynamic stability of poiseuille flow in a bidisperse porous medium with slip effect, Int J Mod Phys B, 2024 · doi:10.1142/S0217979225500067
[18] Hajool, SS; Harfash, AJ, Instability of poiseuille flow in a bidisperse porous medium subject to a uniform vertical throughflow effect, J Fluids Eng, 146, 5, 2024 · doi:10.1115/1.4064102
[19] Afluk, ZA; Harfash, AJ, Double diffusive convection in bidispersive porous media with couple stresses effect and relatively large macropores, Appl Numer Heat Transf Part A, 2024 · doi:10.1080/10407782.2023.2299292
[20] Alexakis, A.; Pétrélis, F.; Morrison, PJ; Doering, CR, Bounds on dissipation in magnetohydrodynamic Couette and Hartmann shear flows, Phys Plasmas, 10, 11, 4324-4334, 2003 · doi:10.1063/1.1613962
[21] Davidson, PA, An introduction to magnetohydrodynamics, 2001, Cambridge: Cambridge University Press, Cambridge · Zbl 0974.76002 · doi:10.1017/CBO9780511626333
[22] Raptis, AA, Flow through a porous medium in the presence of a magnetic field, Int J Energy Res, 10, 1, 97-100, 1986 · doi:10.1002/er.4440100112
[23] Lin, J-R; Hwang, C-C, Lubrication of short porous journal bearings-use of the Brinkman-extended Darcy model, Wear, 161, 1-2, 93-104, 1993 · doi:10.1016/0043-1648(93)90457-W
[24] Li, W-L, Derivation of modified reynolds equation-a porous media model, J Tribol, 121, 4, 823-829, 1999 · doi:10.1115/1.2834141
[25] Makinde, OD; Mhone, PY, On temporal stability analysis for hydromagnetic flow in a channel filled with a saturated porous medium, Flow Turbul Combust, 83, 1, 21-32, 2009 · Zbl 1169.76025 · doi:10.1007/s10494-008-9187-6
[26] Misra, JC; Shit, GC; Chandra, S.; Kundu, PK, Hydromagnetic flow and heat transfer of a second-grade viscoelastic fluid in a channel with oscillatory stretching walls: application to the dynamics of blood flow, J Eng Math, 69, 91-100, 2011 · Zbl 1244.76127 · doi:10.1007/s10665-010-9376-x
[27] Alloui, Z.; Vasseur, P.; Costa, VAF; Sousa, ACM, Effect of a non-constant magnetic field on natural convection in a horizontal porous layer heated from the bottom, J Eng Math, 81, 141-155, 2013 · Zbl 1359.76273 · doi:10.1007/s10665-012-9593-6
[28] Nath, G.; Singh, S., Similarity solutions for magnetogasdynamic shock waves in a rotating ideal gas using the lie group-theoretic method, J Eng Math, 126, 1, 9, 2021 · Zbl 1479.35039 · doi:10.1007/s10665-020-10073-4
[29] Singh, S., Similarity solutions for magnetogasdynamic cylindrical shock wave in rotating non-ideal gas using lie group theoretic method, J Eng Math, 131, 1, 5, 2021 · Zbl 1521.76735 · doi:10.1007/s10665-021-10169-5
[30] Alkharashi, SA; Sirwah, MA, Dynamical responses of inclined heated channel of mhd dusty fluids through porous media, J Eng Math, 130, 1, 5, 2021 · Zbl 1497.76032 · doi:10.1007/s10665-021-10160-0
[31] Tuli, SS; Saha, LK; Roy, NC, Effect of inclined magnetic field on natural convection and entropy generation of non-newtonian ferrofluid in a square cavity having a heated wavy cylinder, J Eng Math, 141, 1, 6, 2023 · Zbl 1521.76822 · doi:10.1007/s10665-023-10279-2
[32] Bhatti, MM; Bég, OA; Kuharat, S., Electromagnetohydrodynamic (emhd) convective transport of a reactive dissipative Carreau fluid with thermal ignition in a non-darcian vertical duct, Appl Numer Heat Transf Part A, 2023 · doi:10.1080/10407782.2023.2284333
[33] Reddy, SRR; Jakeer, S.; Rupa, ML; Sekhar, KR, Two-phase analysis on radiative solar pump applications using mhd eyring-powell hybrid nanofluid flow with the non-fourier heat flux model, J Eng Math, 144, 1, 7, 2024 · Zbl 1532.76007 · doi:10.1007/s10665-023-10306-2
[34] Bhatti, MM; Sarris, I.; Michaelides, EE; Ellahi, R., Sisko fluid flow through a non-Darcian micro-channel: an analysis of quadratic convection and electro-magneto-hydrodynamics, Therm Sci Eng Prog, 50, 2024 · doi:10.1016/j.tsep.2024.102531
[35] Drazin, PG; Reid, WH, Hydrodynamic stability, 2004, Cambridge: Cambridge University Press, Cambridge · Zbl 1055.76001 · doi:10.1017/CBO9780511616938
[36] Nield, DA, The stability of flow in a channel or duct occupied by a porous medium, Int J Heat Mass Transf, 46, 22, 4351-4354, 2003 · Zbl 1047.76512 · doi:10.1016/S0017-9310(03)00105-4
[37] Hill AA, Straughan B (2010) Stability of Poiseuille flow in a porous medium. In: Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday, pp 287-293 · Zbl 1374.76070
[38] Straughan, B.; Harfash, AJ, Instability in Poiseuille flow in a porous medium with slip boundary conditions, Microfluid Nanofluid, 15, 109-115, 2013 · doi:10.1007/s10404-012-1131-3
[39] Brian, S., Stability and wave motion in porous media, 2008, New York: Springer, New York · Zbl 1149.76002
[40] Badday, AJ; Harfash, AJ, Instability in Poiseuille flow in a porous medium with slip boundary conditions and uniform vertical throughflow effects, J Eng Math, 135, 1, 1-17, 2022 · Zbl 1508.76041 · doi:10.1007/s10665-022-10231-w
[41] Badday, AJ; Harfash, AJ, Magnetohydrodynamic instability of fluid flow in a porous channel with slip boundary conditions, Appl Math Comput, 432, 2022 · Zbl 1510.76204 · doi:10.1016/j.amc.2022.127363
[42] Kakutani, T., The hydromagnetic stability of the modified plane Couette flow in the presence of a transverse magnetic field, J Phys Soc Jpn, 19, 6, 1041-1057, 1964 · doi:10.1143/JPSJ.19.1041
[43] Takashima, M., The stability of natural convection in a vertical layer of electrically conducting fluid in the presence of a transverse magnetic field, Fluid Dyn Res, 14, 3, 121, 1994 · doi:10.1016/0169-5983(94)90056-6
[44] Dongarra, JJ; Straughan, B.; Walker, DW, Chebyshev tau-qz algorithm methods for calculating spectra of hydrodynamic stability problems, Appl Numer Math, 22, 4, 399-434, 1996 · Zbl 0867.76025 · doi:10.1016/S0168-9274(96)00049-9
[45] Yecko, P., Disturbance growth in two-fluid channel flow: the role of capillarity, Int J Multiph Flow, 34, 3, 272-282, 2008 · doi:10.1016/j.ijmultiphaseflow.2007.09.005
[46] Harfash, AJ; Meften, GA, Nonlinear stability analysis for double-diffusive convection when the viscosity depends on temperature, Phys Scr, 95, 8, 2020 · doi:10.1088/1402-4896/ab99f9
[47] Harfash, AJ; Hameed, AA, Stability of double-diffusive convection in a porous medium with temperature-dependent viscosity: Brinkman-Forchheimer model, Bull Malay Math Sci Soc, 44, 1275-1307, 2021 · Zbl 1465.76037 · doi:10.1007/s40840-020-01013-7
[48] Badday, AJ; Harfash, AJ, Thermosolutal convection in a Brinkman porous medium with reaction and slip boundary conditions, J Porous Media, 25, 1, 15-29, 2022 · doi:10.1615/JPorMedia.2021038795
[49] Badday, AJ; Harfash, AJ, Thermosolutal convection in a Brinkman-Darcy-Kelvin-Voigt fluid with a bidisperse porous medium, Phys Fluids, 36, 1, 2024 · doi:10.1063/5.0186934
[50] Harfash, AJ; Al-Juaifri, GA; Ghafil, WK; Harfash, AJ, Slip boundary conditions effect on bidispersive convection with local thermal non-equilibrium: Significant findings, Chin J Phys, 89, 144-159, 2024 · doi:10.1016/j.cjph.2024.03.006
[51] Afluk, ZA; Harfash, AJ, Stability and instability of thermosolutal convection in a Brinkman-Darcy-Kelvin-Voigt fluid with couple stress effect, Phys Fluids, 36, 3, 666-673, 2024 · doi:10.1063/5.0196321
[52] Orszag, SA, Accurate solution of the Orr-Sommerfeld stability equation, J Fluid Mech, 50, 4, 689-703, 1971 · Zbl 0237.76027 · doi:10.1017/S0022112071002842
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.