Skip to main content
Log in

Double-Diffusive Convection in Bidispersive Porous Medium with Chemical Reaction and Magnetic Field Effects

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This study features a model for double-diffusive convection in a bidisperse porous medium where a vertical magnetic field chemical reaction’s effects are present. Double-diffusive convection is the convective motion of fluid resulting from temperature and salt gradient effects. A bidisperse porous medium is one in which there exist pores known as macropores. Furthermore, the solid skeleton has cracks or fissures which give rise to a porosity within the skeleton, called microporosity. The emphasis here is on the situation of a single temperature field where the layer is heated from below and simultaneously salted from above to below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alchaar, S., Vasseur, P., Bilgen, E.1 Effects of a magnetic field on the onset of convection in a porous medium. Heat Mass Trans. 30(4), 259–267 (1995)

    Article  Google Scholar 

  • Badday, A.J., Harfash, A.J.: Chemical reaction effect on convection in bidispersive porous medium. Transp. Porous Media 137(2), 381–397 (2021)

    Article  Google Scholar 

  • Borja, R.I., Liu, X., White, J.A.: Multiphysics hillslope processes triggering landslides. Acta Geotechnica 7(4), 261–269 (2012)

    Article  Google Scholar 

  • Borja, R.I., White, J.A.: Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotechnica 5(1), 1–14 (2010)

    Article  Google Scholar 

  • Burghardt, A., Rogut, J., Gotkowska, J.: Diffusion coefficients in bidisperse porous structures. Chem. Eng. Sci. 43(9), 2463–2476 (1988)

    Article  Google Scholar 

  • Capone, F., De Luca, R.: The effect of the vadasz number on the onset of thermal convection in rotating bidispersive porous media. Fluids 5(4), 173 (2020)

    Article  Google Scholar 

  • Capone, F., De Luca, R., Gentile, M.: Coriolis effect on thermal convection in a rotating bidispersive porous layer. Proc. Royal Soc. A 476(2235), 20190875 (2020a)

    Article  Google Scholar 

  • Capone, F., De Luca, R., Gentile, M.: Thermal convection in rotating anisotropic bidispersive porous layers. Mech. Res. Commun. 110, 103601 (2020b)

    Article  Google Scholar 

  • Challoob, H.A., Harfash, A.J., Harfash, A.J.: Bidispersive double diffusive convection with relatively large macropores and generalized boundary conditions. Phys. Fluids 33(3), 034114 (2021a)

    Article  Google Scholar 

  • Challoob, H.A., Harfash, A.J., Harfash, A.J.: Bidispersive thermal convection with relatively large macropores and generalized velocity and temperature boundary conditions. Phys. Fluids 33(1), 014105 (2021b)

    Article  Google Scholar 

  • Challoob, H.A., Mathkhor, A.J., Harfash, A.J.: Slip boundary condition effect on double-diffusive convection in a porous medium: Brinkman model. Heat Transf. Asian Res. 49(1), 258–268 (2020)

    Article  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability (1981)

  • Chen, B., Cunningham, A., Ewing, R., Peralta, R., Visser, E.: Two-dimensional modeling of microscale transport and biotransformation in porous media. Numer. Methods Partial Differ. Equ. 10(1), 65–83 (1994)

    Article  Google Scholar 

  • Curran, M.C., Allen, M.: Parallel computing for solute transport models via alternating direction collocation. Adv. Water Resour. 13(2), 70–75 (1990)

    Article  Google Scholar 

  • di Santolo, A.S., Evangelista, A.: Calibration of a rheological model for debris flow hazard mitigation in the campania region, In: Landslides and Engineered Slopes. From the Past to the Future, Two Volumes+ CD-ROM, CRC Press, pp 935–942 (2008)

  • Ewing, R.E., Weekes, S.L.: Numerical methods for contaminant. Adv. Comput. Math. 202, 75 (1998)

    Google Scholar 

  • Franchi, F., Straughan, B.: A comparison of the graffi and kazhikhov-smagulov models for top heavy pollution instability. Adv. Water Resour. 24(6), 585–594 (2001)

    Article  Google Scholar 

  • Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry, and nonlinear stability. Archive Rational Mech. Anal. 89(3), 211–228 (1985)

    Article  Google Scholar��

  • Gentile, M., Straughan, B.: Tridispersive thermal convection. Nonlinear Anal. Real World Appl. 42, 378–386 (2018)

    Article  Google Scholar 

  • Gentile, M., Straughan, B.: Bidispersive thermal convection with relatively large macropores. J. Fluid Mech. 898, A14 (2020)

    Article  Google Scholar 

  • Gheorghiu, C., Dragomirescu, F.I.: Spectral methods in linear stability applications to thermal convection with variable gravity field. Appl. Numer. Math. 59(6), 1290–1302 (2009)

    Article  Google Scholar 

  • Gilman, A., Bear, J.: The influence of free convection on soil salinization in arid regions. Transp. Porous Media 23(3), 275–301 (1996)

    Article  Google Scholar 

  • Hameed, A.A., Harfash, A.J.: Unconditional nonlinear stability for double-diffusive convection in a porous medium with temperature-dependent viscosity and density. Heat Transf. Asian Res. 48(7), 2948–2973 (2019)

    Article  Google Scholar 

  • Harfash, A.J.: Magnetic effect on instability and nonlinear stability of double-diffusive convection in a reacting fluid. Continuum Mech. Thermodyn. 25(1), 89–106 (2013)

    Article  Google Scholar 

  • Harfash, A.J.: Convection in a porous medium with variable gravity field and magnetic field effects. Transp. Porous Media 103(3), 361–379 (2014)

    Article  Google Scholar 

  • Harfash, A.J.: Magnetic effect on convection in a porous medium with chemical reaction effect. Transp. Porous Media 106(1), 163–179 (2015)

    Article  Google Scholar 

  • Harfash, A.J., Alshara, A.K.: Chemical reaction effect on double diffusive convection in porous media with magnetic and variable gravity effects. Korean J. Chem. Eng. 32(6), 1046–1059 (2015a)

    Article  Google Scholar 

  • Harfash, A.J., Alshara, A.K.: Magnetic field and throughflow effects on double-diffusive convection in internally heated anisotropic porous media. Korean J. Chem. Eng. 32(10), 1970–1985 (2015b)

    Article  Google Scholar 

  • Harfash, A.J., Challoob, H.A.: Nonhomogeneous porosity and thermal diffusivity effects on stability and instability of double-diffusive convection in a porous medium layer: Brinkman model. Nonlinear Eng. 8(1), 293–302 (2019)

    Article  Google Scholar 

  • Harfash, A.J., Meften, G.A.: Couple stresses effect on instability and nonlinear stability in a double diffusive convection. Appl. Math. Comput. 341, 301–320 (2019)

    Google Scholar 

  • Harfash, A.J., Meften, G.A.: Nonlinear stability analysis for double-diffusive convection when the viscosity depends on temperature. Physica Scripta 95(8), 085203 (2020)

    Article  Google Scholar 

  • Harfash, A.J., Straughan, B.: Magnetic effect on instability and nonlinear stability in a reacting fluid. Meccanica 47(8), 1849–1857 (2012)

    Article  Google Scholar 

  • Hooman, K., Maas, U.: Theoretical analysis of coal stockpile self-heating. Fire Safety J. 67, 107–112 (2014)

    Article  Google Scholar 

  • Hooman, K., Sauret, E., Dahari, M.: Theoretical modelling of momentum transfer function of bi-disperse porous media. Appl. Thermal Eng. 75, 867–870 (2015)

    Article  Google Scholar 

  • Ibrahim, F., Elaiw, A., Bakr, A.: Effect of the chemical reaction and radiation absorption on the unsteady mhd free convection flow past a semi infinite vertical permeable moving plate with heat source and suction. Commun. Nonlinear Sci. Numer. Simulat. 13(6), 1056–1066 (2008)

    Article  Google Scholar 

  • Jena, S.K., Mahapatra, S.K., Sarkar, A.: Thermosolutal convection in a rectangular concentric annulus: a comprehensive study. Transp. Porous Media 98(1), 103–124 (2013)

    Article  Google Scholar 

  • Joseph, D.: Stability of fluid motions ii springer tracts in natural philosophy, vol. 28. Springer (1976)

  • Joseph, D.D.: Uniqueness criteria for the conduction-diffusion solution of the boussinesq equations. Archive Rational Mech. Anal. 35(3), 169–177 (1969)

    Article  Google Scholar 

  • Joseph, D.D.: Global stability of the conduction-diffusion solution. Archive Rational Mech. Anal. 36(4), 285–292 (1970)

    Article  Google Scholar 

  • Lin, F.C., Liu, B.H., Huang, C.T., Chen, Y.M.: Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure. Int. J. Heat Mass Trans. 54(21–22), 4621–4629 (2011)

    Article  Google Scholar 

  • Lombardo, S., Mulone, G., Straughan, B.: Non-linear stability in the bénard problem for a double-diffusive mixture in a porous medium. Math. Methods Appl. Sci. 24(16), 1229–1246 (2001)

    Article  Google Scholar 

  • Ludvigsen, A., Palm, E., McKibbin, R.: Convective momentum and mass transport in porous sloping layers. J. Geophys. Res. Solid Earth 97(B9), 12315–12325 (1992)

    Article  Google Scholar 

  • Montrasio, L., Valentino, R., Losi, G.L.: Rainfall infiltration in a shallow soil: a numerical simulation of the double-porosity effect. Electron. J. Geotechnol. Eng 16, 1387–1403 (2011)

    Google Scholar 

  • Mottet, L., Prat, M.: Numerical simulation of heat and mass transfer in bidispersed capillary structures: application to the evaporator of a loop heat pipe. Appl. Thermal Eng. 102, 770–784 (2016)

    Article  Google Scholar 

  • Ni, J., Beckermann, C., Smith, T.: Effect of an electromagnetic field on natural convection in porous media. ASME Publications HTD 248, 23 (1993)

    Google Scholar 

  • Nield, D.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4(3), 553–560 (1968)

    Article  Google Scholar 

  • Nield, D., Kuznetsov, A.: The onset of convection in a bidisperse porous medium. Int. J. Heat Mass Trans. 49(17–18), 3068–3074 (2006)

    Article  Google Scholar 

  • Shankar, B., Shivakumara, I.: Effect of local thermal nonequilibrium on the stability of natural convection in an oldroyd-b fluid saturated vertical porous layer. J. Heat Transf. 139(4),(2017)

  • Sharma, R., Pal, M., et al.: On a couple-stress fluid heated from below in a porous medium in the presence of a magnetic field and rotation. J. Porous Media 5(2),(2002)

  • Sharma, R., et al.: The effect of magnetic field dependent viscosity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium. Transp. Porous Media 60(3), 251–274 (2005)

    Article  Google Scholar 

  • Straughan, B.: Stability and Wave Motion in Porous Media, vol. 165. Springer, Berlin (2008)

    Google Scholar 

  • Straughan, B.: Structure of the dependence of darcy and forchheimer coefficients on porosity. Int. J. Eng. Sci. 48(11), 1610–1621 (2010)

    Article  Google Scholar 

  • Straughan, B.: Anisotropic inertia effect in microfluidic porous thermosolutal convection. Microfluidics Nanofluidics 16(1–2), 361–368 (2014)

    Article  Google Scholar 

  • Straughan, B.: Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, vol. 32. Springer, Berlin (2015a)

    Google Scholar 

  • Straughan, B.: Exchange of stability in cattaneo-ltne porous convection. Int. J. Heat Mass Transf. 89, 792–798 (2015b)

    Article  Google Scholar 

  • Straughan, B.: Importance of darcy or brinkman laws upon resonance in thermal convection. Ricerche di Matematica 65(2), 349–362 (2016)

    Article  Google Scholar 

  • Straughan, B.: Mathematical Aspects of Multi-Porosity Continua. Springer, Berlin (2017)

    Book  Google Scholar 

  • Straughan, B.: Bidispersive double diffusive convection. Int. J. Heat Mass Transf. 126, 504–508 (2018)

    Article  Google Scholar 

  • Straughan, B.: Effect of inertia on double diffusive bidispersive convection. Int. J. Heat Mass Transf. 129, 389–396 (2019)

    Article  Google Scholar 

  • Suchomel, B.J., Chen, B.M., Allen, M.B.: Network model of flow, transport and biofilm effects in porous media. Transp. Porous Media 30(1), 1–23 (1998)

    Article  Google Scholar 

  • Szczygieł, J.: Enhancement of reforming efficiency by optimising the porous structure of reforming catalyst: theoretical considerations. Fuel 85(10–11), 1579–1590 (2006)

    Article  Google Scholar 

  • Szczygieł, J.: Control of transport phenomena in the interior of the reforming catalyst grain: a new approach to the optimisation of the reforming process. Fuel Process. Technol. 92(8), 1434–1448 (2011)

    Article  Google Scholar 

  • Taqvi, S.M., Vishnoi, A., Levan, M.D.: Effect of macropore convection on mass transfer in a bidisperse adsorbent particle. Adsorption 3(2), 127–136 (1997)

    Article  Google Scholar 

  • Valus, J., Schneider, P.: Transport characteristics of bidisperse porous \(\alpha\)-aluminas. Appl. Catalysis 16(3), 329–341 (1985)

    Article  Google Scholar 

  • Yeh, C.C., Chen, C.N., Chen, Y.M.: Heat transfer analysis of a loop heat pipe with biporous wicks. Int. J. Heat Mass Transf. 52(19–20), 4426–4434 (2009)

    Article  Google Scholar 

Download references

Funding

No funding has been received for this article.

Author information

Authors and Affiliations

Authors

Contributions

A.J. Harfash proposed the model, carried out the computations and drafted the introduction and the stability analysis results sections; A.J. Badday contributed to the sections namely Governing equations, linear instability and nonlinear stability. Both authors gave final approval for publication.

Corresponding author

Correspondence to Akil J. Harfash.

Ethics declarations

Conflict of interest

We have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badday, A.J., Harfash, A.J. Double-Diffusive Convection in Bidispersive Porous Medium with Chemical Reaction and Magnetic Field Effects. Transp Porous Med 139, 45–66 (2021). https://doi.org/10.1007/s11242-021-01642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01642-x

Keywords

Navigation