×

From elastic shallow shells to beams with elastic hinges by \(\Gamma\)-convergence. (English) Zbl 07900951

Summary: In this paper, we study the \(\Gamma\)-limit of a properly rescaled family of energies, defined on a narrow strip, as the width of the strip tends to zero. The limit energy is one-dimensional and is able to capture (and penalize) concentrations of the midline curvature. At the best of our knowledge, it is the first paper in the \(\Gamma\)-convergence field for dimension reduction that predicts elastic hinges. In particular, starting from a purely elastic shell model with “smooth” solutions, we obtain a beam model where the derivatives of the displacement and/or of the rotation fields may have jump discontinuities. Mechanically speaking, elastic hinges can occur in the beam.

MSC:

74K20 Plates
74B10 Linear elasticity with initial stresses
49J45 Methods involving semicontinuity and convergence; relaxation

References:

[1] Attouch, H., Variational Convergence for Functions and Operators, 1984, Program: Pitman Advanced Pub., Program · Zbl 0561.49012
[2] Besov, OV; Il’in, VP; Nikol’skij, SM, Integral Representations of Functions and Imbedding Theorems, 1978, New York: Wiley, New York · Zbl 0392.46022
[3] Brunetti, M.; Favata, A.; Vidoli, S., Enhanced models for the nonlinear bending of planar rods: localization phenomena and multistability, Proc. R. Soc. A Math. Phys. Eng. Sci., 476, 2242, 20200455, 2020 · Zbl 1472.74129 · doi:10.1098/rspa.2020.0455
[4] Calladine, CR, Theory of Shell Structures, 1983, Cambridge: Cambridge University Press, Cambridge · Zbl 0507.73079 · doi:10.1017/CBO9780511624278
[5] Conti, S.; Maggi, F., Confining thin elastic sheets and folding paper, Arch. Ration. Mech. Anal., 187, 1, 1-48, 2007 · Zbl 1127.74005 · doi:10.1007/s00205-007-0076-2
[6] Coppedè, M., Paroni, R., Picchi Scardaoni, M.: Numerical investigation of the asymptotic behavior of tape springs. J. Theor. Appl. Mech. (accepted) (2024)
[7] D’Onofrio, L.; Giannetti, F.; Greco, L., On weak Hessian determinants, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, 16, 3, 159-169, 2005 · Zbl 1127.26007
[8] Dacorogna, B.; Marcellini, P., Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants, Comptes rendus de l’Académie des sciences. Série 1, Mathématique, 311, 6, 393-396, 1990 · Zbl 0723.49007
[9] Demengel, F., Fonctions à hessien borné, Annales de l’institut Fourier, 34, 2, 155-190, 1984 · Zbl 0525.46020 · doi:10.5802/aif.969
[10] Evans, LC; Gariepy, RF, Measure Theory and Fine Properties of Functions, 1991, Boca Raton: CRC Press, Boca Raton
[11] Fonseca, I.; Leoni, G.; Malý, J., Weak continuity and lower semicontinuity results for determinants, Arch. Ration. Mech. Anal., 178, 3, 411-448, 2005 · Zbl 1081.49013 · doi:10.1007/s00205-005-0377-2
[12] Fonseca, I.; Leoni, G.; Paroni, R., On Hessian matrices in the space BH, Commun. Contemp. Math., 07, 4, 401-420, 2005 · Zbl 1102.49021 · doi:10.1142/S0219199705001805
[13] Freddi, L.; Hornung, P.; Mora, MG; Paroni, R., A corrected Sadowsky functional for inextensible elastic ribbons, J. Elast., 123, 2, 125-136, 2016 · Zbl 1335.49025 · doi:10.1007/s10659-015-9551-4
[14] Freddi, L.; Hornung, P.; Mora, MG; Paroni, R., One-dimensional von Kármán models for elastic ribbons, Meccanica, 53, 3, 659-670, 2018 · Zbl 1384.49041 · doi:10.1007/s11012-017-0666-5
[15] Freddi, L.; Hornung, P.; Mora, MG; Paroni, R., Stability of boundary conditions for the Sadowsky functional, J. Nonlinear Sci., 32, 5, 72, 2022 · Zbl 1497.49017 · doi:10.1007/s00332-022-09829-2
[16] Friesecke, G.; James, RD; Müller, S., A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal., 180, 2, 183-236, 2006 · Zbl 1100.74039 · doi:10.1007/s00205-005-0400-7
[17] Gangbo, W.; Jacobs, M.; Kim, I., Well-posedness and regularity for a polyconvex energy, ESAIM: Control Optim. Calc. Var., 29, 67, 2023 · Zbl 1522.49026 · doi:10.1051/cocv/2023041
[18] Guinot, F.; Bourgeois, S.; Cochelin, B.; Blanchard, L., A planar rod model with flexible thin-walled cross-sections. Application to the folding of tape springs, Int. J. Solids Struct., 49, 1, 73-86, 2012 · doi:10.1016/j.ijsolstr.2011.09.011
[19] Kumar, A.; Audoly, B.; Lestringant, C., Asymptotic derivation of a higher-order one-dimensional model for tape springs, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 381, 2244, 20220028, 2023 · doi:10.1098/rsta.2022.0028
[20] Lewicka, M.; Mahadevan, L.; Pakzad, MR, Models for elastic shells with incompatible strains, Proc. R. Soc. A Math. Phys. Eng. Sci., 470, 2165, 20130604, 2014 · doi:10.1098/rspa.2013.0604
[21] Lobkovsky, AE, Boundary layer analysis of the ridge singularity in a thin plate, Phys. Rev. E, 53, 4, 3750-3760, 1996 · doi:10.1103/PhysRevE.53.3750
[22] Mansfield, EH, Large-Deflexion torsion and flexure of initially curved strips, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 334, 1598, 279-298, 1973 · Zbl 0286.73039
[23] Martin, M.; Bourgeois, S.; Cochelin, B.; Guinot, F., Planar folding of shallow tape springs: the rod model with flexible cross-section revisited as a regularized Ericksen bar model, Int. J. Solids Struct., 188-189, 189-209, 2020 · doi:10.1016/j.ijsolstr.2019.10.009
[24] Pakzad, MR, On the Sobolev space of isometric immersions, J. Differ. Geom., 66, 1, 47-69, 2004 · Zbl 1064.58009 · doi:10.4310/jdg/1090415029
[25] Percivale, D.; Tomarelli, F., A variational principle for plastic hinges in a beam, Math. Models Methods Appl. Sci., 19, 12, 2263-2297, 2009 · Zbl 1187.49008 · doi:10.1142/S021820250900411X
[26] Picault, E.; Bourgeois, S.; Cochelin, B.; Guinot, F., A rod model with thin-walled flexible cross-section: extension to 3D motions and application to 3D foldings of tape springs, Int. J. Solids Struct., 84, 64-81, 2016 · doi:10.1016/j.ijsolstr.2016.01.006
[27] Rákosník, J., Some remarks to anisotropic Sobolev spaces II, Beitrage zur Analysis, 15, 127-140, 1981 · Zbl 0494.46034
[28] Seffen, KA; Pellegrino, S., Deployment dynamics of tape springs, Proc. R. Soc. A Math. Phys. Eng. Sci., 455, 1983, 1003-1048, 1999 · Zbl 0947.74032 · doi:10.1098/rspa.1999.0347
[29] Seffen, KA; You, Z.; Pellegrino, S., Folding and deployment of curved tape springs, Int. J. Mech. Sci., 42, 10, 2055-2073, 2000 · Zbl 0969.74502 · doi:10.1016/S0020-7403(99)00056-9
[30] Velčić, I., Shallow-shell models by \(\Gamma \)-convergence, Math. Mech. Solids, 17, 8, 781-802, 2012 · Zbl 07278889 · doi:10.1177/1081286511429889
[31] Venkataramani, S.: The energy of crumpled sheets in Foppl-von Karman plate theory. pp. 1-40 (2003)
[32] Walker, SJI; Aglietti, GS, A study of tape spring fold curvature for space deployable structures, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 221, 3, 313-325, 2007 · doi:10.1243/09544100JAERO209
[33] Wuest, W., Einige Anwendungen der Theorie der Zylinderschale, ZAMM J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik, 34, 12, 444-454, 1954 · Zbl 0057.17003 · doi:10.1002/zamm.19540341203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.