×

Stability of boundary conditions for the Sadowsky functional. (English) Zbl 1497.49017

Summary: It has been proved by the authors that the (extended) Sadowsky functional can be deduced as the \(\Gamma\)-limit of the Kirchhoff energy on a rectangular strip, as the width of the strip tends to 0. In this paper, we show that this \(\Gamma\)-convergence result is stable when affine boundary conditions are prescribed on the short sides of the strip. These boundary conditions include those corresponding to a Möbius band. This provides a rigorous justification of the original formal argument by Sadowsky about determining the equilibrium shape of a free-standing Möbius strip. We further write the equilibrium equations for the limit problem and show that, under some regularity assumptions, the centerline of a developable Möbius band at equilibrium cannot be a planar curve.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49S05 Variational principles of physics
74B20 Nonlinear elasticity
74K20 Plates

References:

[1] Alexander, JC; Antman, SS, The ambiguous twist of Love, Quart. Appl. Math., 40, 83-92 (1982) · Zbl 0486.73032 · doi:10.1090/qam/652052
[2] Agostiniani, V.; De Simone, A.; Koumatos, K., Shape programming for narrow ribbons of nematic elastomers, J. Elasticity, 127, 1-24 (2017) · Zbl 1362.74007 · doi:10.1007/s10659-016-9594-1
[3] Audoly, B.; Neukirch, S., A one-dimensional model for elastic ribbons: a little stretching makes a big difference, J. Mech. Phys. Solids, 153, 104-157 (2021) · doi:10.1016/j.jmps.2021.104457
[4] Audoly, B.; Seffen, KA, Buckling of naturally curved elastic strips: the ribbon model makes a difference, J. Elasticity, 119, 293-320 (2015) · Zbl 1423.74455 · doi:10.1007/s10659-015-9520-y
[5] Bartels, S., Numerical simulation of inextensible elastic ribbons, SIAM J. Numer. Anal., 58, 3332-3354 (2020) · Zbl 1453.74003 · doi:10.1137/20M1357494
[6] Bartels, S.; Hornung, P., Bending paper and the Möbius strip, J. Elasticity, 119, 113-136 (2015) · Zbl 1464.74025 · doi:10.1007/s10659-014-9501-6
[7] Brunetti, M.; Favata, A.; Vidoli, S., Enhanced models for the nonlinear bending of planar rods: localization phenomena and multistability, Proc. Roy. Soc. Edinburgh Sect. A, 476, 20200455 (2020) · Zbl 1472.74129
[8] Charrondière, R.; Bertails-Descoubes, F.; Neukirch, S.; Romero, V., Numerical modeling of inextensible elastic ribbons with curvature-based elements, Comput. Methods Appl. Mech. Engrg., 364, 112922 (2020) · Zbl 1442.74098 · doi:10.1016/j.cma.2020.112922
[9] Chopin, J.; Démery, V.; Davidovitch, B., Roadmap to the morphological instabilities of a stretched twisted ribbon, J. Elasticity, 119, 137-189 (2015) · Zbl 1469.74046 · doi:10.1007/s10659-014-9498-x
[10] Davoli, E., Thin-walled beams with a cross-section of arbitrary geometry: derivation of linear theories starting from 3D nonlinear elasticity, Adv. Calc. Var., 6, 33-91 (2013) · Zbl 1263.74031 · doi:10.1515/acv-2011-0003
[11] Dias, MA; Audoly, B., Wunderlich, Meet Kirchhoff: A general and unified description of elastic ribbons and thin rods, J. Elasticity, 119, 49-66 (2015) · Zbl 1455.74058 · doi:10.1007/s10659-014-9487-0
[12] Eberhard, P.; Hornung, P., On singularities of stationary isometric deformations, Nonlinearity, 33, 4900-4923 (2020) · Zbl 1451.74148 · doi:10.1088/1361-6544/ab9245
[13] Fosdick, R., Fried, E. (eds.): The mechanics of ribbons and Möbius bands, Springer, (2015) · Zbl 1320.74006
[14] Freddi, L.; Hornung, P.; Mora, MG; Paroni, R., A corrected Sadowsky functional for inextensible elastic ribbons, J. Elasticity, 123, 125-136 (2016) · Zbl 1335.49025 · doi:10.1007/s10659-015-9551-4
[15] Freddi, L.; Hornung, P.; Mora, MG; Paroni, R., A variational model for anisotropic and naturally twisted ribbons, SIAM J. Math. Anal., 48, 3883-3906 (2016) · Zbl 1352.49010 · doi:10.1137/16M1074862
[16] Freddi, L.; Hornung, P.; Mora, MG; Paroni, R., One-dimensional von Kármán models for elastic ribbons, Meccanica, 53, 659-670 (2018) · Zbl 1384.49041 · doi:10.1007/s11012-017-0666-5
[17] Freddi, L.; Mora, MG; Paroni, R., Nonlinear thin-walled beams with a rectangular cross-section - Part I, Math. Models Methods Appl. Sci., 22, 1150016 (2012) · Zbl 1242.74047 · doi:10.1142/S0218202511500163
[18] Freddi, L.; Mora, MG; Paroni, R., Nonlinear thin-walled beams with a rectangular cross-section - Part II, Math. Models Methods Appl. Sci., 23, 743-775 (2013) · Zbl 1262.74024 · doi:10.1142/S0218202512500595
[19] Friedrich, M., Machill, L.: Derivation of a one-dimensional von Kármán theory for viscoelastic ribbons, (2021). Preprint arXiv, arXiv:2108.05132 · Zbl 1486.74093
[20] Hinz, DF; Fried, E., Translation of Michael Sadowsky’s Paper An elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem, J. Elasticity, 119, 3-6 (2015) · Zbl 1414.74017 · doi:10.1007/s10659-014-9490-5
[21] Hinz, DF; Fried, E., Translation and interpretation of Michael Sadowsky’s paper Theory of elastically bendable inextensible bands with applications to the Möbius band, J. Elasticity, 119, 7-17 (2015) · Zbl 1414.74018 · doi:10.1007/s10659-014-9492-3
[22] Hornung, P., Euler-Lagrange equations for variational problems on space curves, Phys. Rev. E, 81, 066603 (2010) · doi:10.1103/PhysRevE.81.066603
[23] Hornung, P., Deformation of framed curves with boundary conditions, Calc. Var. Partial Differ. Equ., 60, 87 (2021) · Zbl 1462.49004 · doi:10.1007/s00526-021-01980-0
[24] Hornung, P.: Deformation of framed curves, (2021). Preprint arXiv, arXiv:2110.08541 · Zbl 1462.49004
[25] Korner, K., Audoly, B., Bhattacharya, K.: Simple deformation measures for discrete elastic rods and ribbons, (2021). Preprint arXiv, arXiv:2107.04842
[26] Kumar, A.; Handral, P.; Bhandari, CSD; Karmakar, A.; Rangarajan, R., An investigation of models for elastic ribbons: simulations & experiments, J. Mech. Phys. Solids, 143, 104070 (2020) · doi:10.1016/j.jmps.2020.104070
[27] Levin, I.; Siéfert, E.; Sharon, E.; Maor, C., Hierarchy of geometrical frustration in elastic ribbons: Shape-transitions and energy scaling obtained from a general asymptotic theory, J. Mech. Phys. Solids, 156, 104579 (2021) · doi:10.1016/j.jmps.2021.104579
[28] Moore, A.; Healey, T., Computation of elastic equilibria of complete Möbius bands and their stability, Math. Mech. Solids, 24, 939-967 (2018) · Zbl 1446.74154 · doi:10.1177/1081286518761789
[29] Paroni, R.; Tomassetti, G., Macroscopic and microscopic behavior of narrow elastic ribbons, J. Elasticity, 135, 409-433 (2019) · Zbl 1415.74034 · doi:10.1007/s10659-018-09712-w
[30] Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bandes und die Zurückführung des geometrischen Problems auf ein Variationsproblem, Sitzungsber. Preuss. Akad. Wiss. (1930). Mitteilung vom 26 Juni, pp. 412-415 · JFM 56.0601.02
[31] Sadowsky, M., Theorie der elastisch biegsamen undehnbaren Bänder mit Anwendungen auf das Möbiussche Band, Verhandl. des 3. Intern. Kongr. f. Techn. Mechanik, 2, 444-451 (1930) · Zbl 0001.41401
[32] Starostin, EL; van der Heijden, GHM, The equilibrium shape of an elastic developable Möbius strip, PAMM Proc. Appl. Math. Mech., 7, 2020115-2020116 (2007) · doi:10.1002/pamm.200700858
[33] Starostin, EL; van der Heijden, GHM, Equilibrium shapes with stress localisation for inextensible elastic Möbius and other strips, J. Elasticity, 119, 67-112 (2015) · Zbl 1469.74081 · doi:10.1007/s10659-014-9495-0
[34] Teresi, L.; Varano, V., Modeling helicoid to spiral-ribbon transitions of twist-nematic elastomers, Soft Matter, 9, 3081-3088 (2013) · doi:10.1039/c3sm27491h
[35] Tomassetti, G.; Varano, V., Capturing the helical to spiral transitions in thin ribbons of nematic elastomers, Meccanica, 52, 3431-3441 (2017) · Zbl 1394.74127 · doi:10.1007/s11012-017-0631-3
[36] Yu, T.: Bistability and equilibria of creased annular sheets and strips, (2021). Preprint arXiv, arXiv:2104.09704
[37] Yu, T.; Dreier, L.; Marmo, F.; Gabriele, S.; Parascho, S.; Adriaenssens, S., Numerical modeling of static equilibria and bifurcations in bigons and bigon rings, J. Mech. Phys. Solids, 152, 104459 (2021) · doi:10.1016/j.jmps.2021.104459
[38] Yu, T.; Hanna, JA, Bifurcations of buckled, clamped anisotropic rods and thin bands under lateral end translations, J. Mech. Phys. Solids, 122, 657-685 (2019) · doi:10.1016/j.jmps.2018.01.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.