×

New interaction solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov-type system and fusion phenomena. (English) Zbl 07899386

MSC:

35Q51 Soliton equations
35C08 Soliton solutions
Full Text: DOI

References:

[1] Infeld, E.; Senatorski, A.; Skorupski, A. A., Decay of Kadomtsev-Petviashvili solitons, Phys. Rev. Lett., 72, 1345-1347, 1994 · doi:10.1103/PhysRevLett.72.1345
[2] Serkin, V. N.; Hasegawa, A., Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., 85, 4502-4505, 2000 · doi:10.1103/PhysRevLett.85.4502
[3] Maccari, A., Non-resonant interacting water waves in 2+1 dimensions, Chaos Solitons Fractals, 14, 105-116, 2002 · Zbl 1045.76002 · doi:10.1016/S0960-0779(01)00224-7
[4] Lu, F.; Lin, Q.; Knox, W. H.; Agrawal, G. P., Vector soliton fission, Phys. Rev. Lett., 93, 2004 · doi:10.1103/PhysRevLett.93.183901
[5] Bruzon, M. S.; Gandarias, M. L.; Senthilvelan, M., Nonlocal symmetries of Riccati and Abel chains and their similarity reductions, J. Math. Phys., 53, 2012 · Zbl 1274.34020 · doi:10.1063/1.3682473
[6] Wazwaz, A. M., Multiple kink solutions for two coupled integrable (2+1)-dimensional systems, Appl. Math. Let., 58, 1-6, 2016 · Zbl 1342.35314 · doi:10.1016/j.aml.2016.01.019
[7] Tanwar, D. V.; Kumar, M., Lie symmetries, exact solutions and conservation laws of the Date-Jimbo-Kashiwara-Miwa equation, Nonl. Dyn., 106, 3453-3468, 2021 · doi:10.1007/s11071-021-06954-7
[8] Radha, B.; Duraisamy, C., The homogeneous balance method and its applications for finding the exact solutions for nonlinear equations, Journal of Ambient Intelligence and Humanized Computing, 12, 6591-6597, 2021 · doi:10.1007/s12652-020-02278-3
[9] Zhou, Y.; Zhang, X. J.; Zhang, C.; Jia, J. J.; Ma, W. X., New lump solutions to a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation, Appl. Math. Lett., 141, 2023 · Zbl 1514.35402 · doi:10.1016/j.aml.2023.108598
[10] Liu, M. M.; Yu, J. P.; Ma, W. X.; Khalique, C. M.; Sun, Y. L., Dynamic analysis of lump solutions based on the dimensionally reduced generalized Hirota bilinear KP-Boussinesq equation, Mod. Phys. Lett., 37, 2023 · doi:10.1142/S0217984922502037
[11] Lou, S. Y., On the coherent structures of the Nizhnik-Novikov-Veselov equation, Phys. Lett. A, 277, 94-100, 2000 · Zbl 1273.35264 · doi:10.1016/S0375-9601(00)00699-X
[12] Tang, X. Y.; Lou, S. Y.; Zhang, Y., Localized excitations in (2+1)-dimensional systems, Phys. Rev. E, 66, 2002 · doi:10.1103/PhysRevE.66.046601
[13] Tang, X. Y.; Lou, S. Y., Extended multilinear variable separation approach and multi-valued localized excitations for some (2+1)-dimensional integrable systems, J. Math. Phys., 44, 4000-4025, 2003 · Zbl 1062.37084 · doi:10.1063/1.1598619
[14] Qian, X. M.; Lou, S. Y.; Hu, X. B., Variable separation approach for a differential-difference asymmetric Nizhnik-Novikov-Veselov equation, Z. Naturforsch., 59a, 645-658, 2004 · doi:10.1515/zna-2004-1005
[15] Qian, X. M.; Lou, S. Y.; Hu, X. B., Variable separation approach for a differential-difference system: special Toda equation, J. Phys.: Math. Gen. A, 37, 2401-2411, 2004 · Zbl 1042.37052 · doi:10.1088/0305-4470/37/6/029
[16] Zhang, R.; Shen, S. F., A new exact solution and corresponding localized excitations of the (2+1)-dimensional mKdV equation, Phys. Lett. A, 370, 471-476, 2007 · Zbl 1209.35122 · doi:10.1016/j.physleta.2007.06.004
[17] Qu, C. Z.; Shen, S. F., Nonlinear evolution equations admitting multilinear variable separable solutions, J. Math. Phys., 50, 2009 · Zbl 1283.37065 · doi:10.1063/1.3238300
[18] Shen, S. F.; Jin, Y. Y.; Zhang, J., Bäcklund Transformations and solutions of some generalized nonlinear evolution equations, Rep. Math. Phys., 73, 225-279, 2014 · Zbl 1310.37042 · doi:10.1016/S0034-4877(14)60044-6
[19] Zhou, K.; Peng, J. D.; Wang, G. F.; Zhan, S. J.; Shen, S. F.; Jin, Y. Y., New exact solutions of some (2+1)-dimensional Burgers-type systems and interactions, Nonl. Dyn, 108, 4115-4122, 2022 · doi:10.1007/s11071-022-07426-2
[20] Weiss, J.; Tabor, M.; Carnevale, G., The Painlevé property for partial differential equations, J. Math. Phys., 24, 522-526, 1983 · Zbl 0514.35083 · doi:10.1063/1.525721
[21] Calogero, F.; Degasperis, A.; Ji, X. D., Nonlinear Schrödinger-type equations from multiscale reduction of PDEs. I. Systematic derivation, J. Math. Phys., 41, 6399-6443, 2000 · Zbl 0972.35146 · doi:10.1063/1.1287644
[22] Calogero, F.; Degasperis, A.; Ji, X. D., Nonlinear Schrödinger-type equations from multiscale reduction of PDEs. II. Necessary conditions of integrability for real PDEs, J. Math. Phys., 42, 2635-2652, 2001 · Zbl 1061.35127 · doi:10.1063/1.1366296
[23] Feng, B. F.; Shi, C. Y.; Zhang, G. X.; Wu, C. F., Higher-order rogue wave solutions of the Sasa-Satsuma equation, J. Phys. A: Math. Theor., 55, 2022 · Zbl 1507.37093 · doi:10.1088/1751-8121/ac6917
[24] Wu, C. F.; Wei, B.; Shi, C. Y.; Feng, B. F., Multi-breather solutions to the Sasa-Satsuma equation, Proc. R. Soc. A, 478, 2022 · doi:10.1098/rspa.2021.0711
[25] Wang, S.; Tang, X. Y.; Lou, S. Y., Soliton fission and fusion: burgers equation and Sharma-Tasso-Olver equation, Chaos Solitons Fractals, 21, 231-239, 2004 · Zbl 1046.35093 · doi:10.1016/j.chaos.2003.10.014
[26] Li, Y. H.; An, H. L.; Zhang, Y. Y., Abundant fission and fusion solutions in the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation, Nonlinear Dyn., 108, 2489-2503, 2022 · doi:10.1007/s11071-022-07306-9
[27] Silem, A.; Lin, J.; Akhtar, N., Nonautonomous dynamics of local and nonlocal Fokas-Lenells models, J. Phys. A, 56, 2023 · Zbl 1522.35145 · doi:10.1088/1751-8121/acee33
[28] Wang, Q.; Mihalache, D.; Belic, M. R.; Zeng, L. W.; Lin, J., Spiraling Laguerre-Gaussian solitons and arrays in parabolic potential wells, Optical Letters, 48, 4233, 2023 · doi:10.1364/OL.498868
[29] Cai, Y. J.; Wu, J. W.; Lin, J., Nondegenerate N-soliton solutions for Manakov system, Chaos Solitons Fractals, 164, 2022 · Zbl 1508.35108 · doi:10.1016/j.chaos.2022.112657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.