×

Nonautonomous dynamics of local and nonlocal Fokas-Lenells models. (English) Zbl 1522.35145

Summary: We investigate the dynamics of solutions to the local and nonlocal nonautonomous Fokas-Lenells (FL) models. Solutions to the local and nonlocal reductions are presented using the Wronskian technique by imposing constraints on the double Wronskian solutions to the unreduced nonautonomous FL system. Classifications of the soliton solutions are shown in relation to the distribution of the eigenvalues. Moreover, dynamics of these solutions are presented, along with the impacts of the variable coefficient \(\alpha(t)\). Notably, the coefficient \(\alpha(t)\) influences the top traces and velocities of the found solutions in both the local and nonlocal cases, enriching this study.

MSC:

35C08 Soliton solutions
35G55 Initial value problems for systems of nonlinear higher-order PDEs
Full Text: DOI

References:

[1] Serkin, V. N.; Hasegawa, A., Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., 85, 4502-5 (2000) · doi:10.1103/PhysRevLett.85.4502
[2] Serkin, V. N.; Hasegawa, A., Soliton management in the nonlinear Schrödinger equation model with varying dispertion, nonlinearity and gain, JETP Lett., 72, 89-92 (2000) · doi:10.1134/1.1312019
[3] Serkin, V. N.; Hasegawa, A.; Belyeva, T. L., Nonautonomous solitons in external potentials, Phys. Rev. Lett., 98 (2007) · doi:10.1103/PhysRevLett.98.074102
[4] Lü, X.; Zhu, H-W; Meng, X. H.; Yang, Z-C; Tian, B., Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, J. Math. Anal. Appl., 336, 1305-15 (2007) · Zbl 1128.35385 · doi:10.1016/j.jmaa.2007.03.017
[5] He, J. S.; Li, Y. S., Designable integrability of the variable coefficient nonlinear Schrödinger equations, Stud. Appl. Math., 126, 1-15 (2010) · Zbl 1220.35158 · doi:10.1111/j.1467-9590.2010.00495.x
[6] Wang, L.; Gao, Y-T; Sun, Z-Y; Qi, F-H; Meng, D-X; Lin, G-D, Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas, Nonlinear Dyn., 67, 713-22 (2012) · Zbl 1356.76457 · doi:10.1007/s11071-011-0021-7
[7] Zhang, Y-J; Zhao, D.; Luo, H-G, Multi-soliton management by the integrable nonautonomous integro-differential Schrödinger equation, Ann. Phys., 350, 112-23 (2014) · Zbl 1344.37079 · doi:10.1016/j.aop.2014.07.018
[8] Mani Rajan, M. S.; Mahalingam, A., Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction, Nonlinear Dyn., 79, 2469-84 (2015) · doi:10.1007/s11071-014-1826-y
[9] Kengne, E.; Lakhssassi, A.; Liu, W-M, Non-autonomous solitons in inhomogeneous nonlinear media with distributed dispersion, Nonlinear Dyn., 97, 449-69 (2019) · Zbl 1430.35209 · doi:10.1007/s11071-019-04991-x
[10] Liu, S. M.; Wu, H.; Zhang, D. J., New dynamics of the classical and nonlocal Gross-Pitaevskii equation with a parabolic potential, Rep. Math. Phys., 86, 271-92 (2020) · Zbl 1527.35323 · doi:10.1016/S0034-4877(20)30083-5
[11] Mareeswaran, R. B.; Sakkaravarthi, K.; Kanna, T., Manipulation of vector solitons in a system of inhomogeneous coherently coupled nonlinear Schrödinger models with variable nonlinearities, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.35295 · doi:10.1088/1751-8121/abae3f
[12] Chen, S-S; Tian, B.; Qu, Q-X; Li, H.; Sun, Y.; Du, X-X, Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma, Chaos Solitons Fractals, 148 (2021) · Zbl 1485.35112 · doi:10.1016/j.chaos.2021.111029
[13] Yang, D-Y; Tian, B.; Qu, Q-X; Zhang, C-R; Chen, S-S; Wei, C-C, Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber, Chaos Solitons Fractals, 150 (2021) · Zbl 1491.78015 · doi:10.1016/j.chaos.2020.110487
[14] Lan, Z., Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrödinger equation in an optical fiber, Appl. Math. Lett., 102 (2020) · Zbl 1440.35029 · doi:10.1016/j.aml.2019.106132
[15] Kundu, A., Exact accelerating solitons in nonholonomic deformation of the KdV equation with a two-fold integrable hierarchy, J. Phys. A: Math. Theor., 41 (2008) · Zbl 1154.76013 · doi:10.1088/1751-8113/41/49/495201
[16] Kundu, A., Nonlinearizing linear equations to integrable systems including new hierarchies with nonholonomic deformations, J. Math. Phys., 50 (2009) · Zbl 1283.37064 · doi:10.1063/1.3204081
[17] Zhou, R., Mixed hierarchy of soliton equations, J. Math. Phys., 50 (2009) · Zbl 1373.37162 · doi:10.1063/1.3257918
[18] Kundu, A., Two-fold integrable hierarchy of nonholonomic deformation of the derivative nonlinear Schrödinger and the Lenells-Fokas equation, J. Math. Phys., 51 (2010) · Zbl 1309.37060 · doi:10.1063/1.3276447
[19] Guo, J-F; Wang, S-K; Wu, K.; Yan, Z., Integrable higher order deformations of Heisenberg supermagnetic model, J. Math. Phys., 50 (2009) · Zbl 1304.82020 · doi:10.1063/1.3251299
[20] Zhaqilao, Z.; Sirendaoreji, S., A generalized coupled Korteweg-de Vries hierarchy, bi-Hamiltonian structure and Darboux transformation, J. Math. Phys., 51 (2010) · Zbl 1311.37051 · doi:10.1063/1.3372626
[21] Zhaqilao, Z., A generalized AKNS hierarchy, bi-Hamiltonian structure and Darboux transformation, Commun. Nonlinear Sci. Numer. Simul., 17, 2319-32 (2012) · Zbl 1276.37045 · doi:10.1016/j.cnsns.2011.10.010
[22] Abhinav, K.; Mukherjee, I.; Guha, P., Non-holonomic and quasi-integrable deformations of the AB equations, Physica D, 433 (2022) · Zbl 1508.35053 · doi:10.1016/j.physd.2022.133186
[23] Fokas, A. S., On a class of physically important integrable equations, Physica D, 87, 145-50 (1995) · Zbl 1194.35363 · doi:10.1016/0167-2789(95)00133-O
[24] Lenells, J.; Fokas, A. S., On a novel integrable generalization of the nonlinear Schrödinger equation, Nonlinearity, 22, 11-27 (2009) · Zbl 1160.35536 · doi:10.1088/0951-7715/22/1/002
[25] Lenells, J., Exactly solvable model for nonlinear pulse propagation in optical fibers, Stud. Appl. Math., 123, 215-32 (2009) · Zbl 1171.35473 · doi:10.1111/j.1467-9590.2009.00454.x
[26] Kaup, D. J.; Newell, A. C., On the Coleman correspondence and the solution of the massive thirring model, Lett. Nuovo Cimento, 20, 325-31 (1977) · doi:10.1007/BF02783605
[27] Liu, S. Z.; Wang, J.; Zhang, D. J., The Fokas-Lenells equations: bilinear approach, stud, Appl. Math., 148, 651-88 (2022) · Zbl 1529.35474 · doi:10.1111/sapm.12454
[28] Nijhoff, F. W.; Capel, H. W.; Quispel, G. R W.; van der Linden, J., The derivative nonlinear Schrödinger equation and the massive thirring model, Phys. Lett. A, 93, 455-8 (1983) · doi:10.1016/0375-9601(83)90629-1
[29] Ai, L. P.; Xu, J., On a Riemann-Hilbert problem for the Fokas-Lenells equation, Appl. Math. Lett., 87, 57-63 (2019) · Zbl 1501.37072 · doi:10.1016/j.aml.2018.07.027
[30] Zhao, Y.; Fan, E. G., Inverse scattering transformation for the Fokas-Lenells equation with nonzero boundary conditions, J. Nonlinear Math. Phys., 28, 38-52 (2021) · Zbl 1497.35416 · doi:10.2991/jnmp.k.200922.003
[31] Lenells, J., Dressing for a novel integrable generalization of the nonlinear Schrödinger equation, J. Nonlinear Sci., 20, 709-22 (2010) · Zbl 1209.35130 · doi:10.1007/s00332-010-9070-1
[32] Zhao, P.; Fan, E. G.; Hou, Y., Algebro-geometric solutions and their reductions for the Fokas-Lenells hierarchy, J. Nonlinear Math. Phys., 20, 355-93 (2013) · Zbl 1420.37097 · doi:10.1080/14029251.2013.854094
[33] Xu, S. W.; He, J. S.; Cheng, Y.; Porseizan, K., The n-order rogue waves of Fokas-Lenells equation, Math. Meth. Appl. Sci., 38, 1106-26 (2015) · Zbl 1318.35112 · doi:10.1002/mma.3133
[34] Wang, Y.; Xiong, Z-J; Ling, L., Fokas-Lenells equation: three types of Darboux transformation and multi-soliton solutions, Appl. Math. Lett., 107 (2020) · Zbl 1441.35098 · doi:10.1016/j.aml.2020.106441
[35] He, J. S.; Xu, S. W.; Porsezian, K., Rogue waves of the Fokas-Lenells equation, J. Phys. Soc. Japan, 81 (2012) · doi:10.1143/JPSJ.81.124007
[36] Vekslerchik, V. E., Lattice representation and dark solitons of the Fokas-Lenells equation, Nonlinearity, 24, 1165-75 (2011) · Zbl 1220.37065 · doi:10.1088/0951-7715/24/4/008
[37] Matsuno, Y., A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: I. Bright soliton solutions, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1245.82055 · doi:10.1088/1751-8113/45/23/235202
[38] Matsuno, Y., A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1253.82068 · doi:10.1088/1751-8113/45/47/475202
[39] Liu, F.; Zhou, C.; Lü, X.; Xu, H., Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber, Optik, 224 (2020) · doi:10.1016/j.ijleo.2020.165237
[40] Wang, Z.; He, L.; Qin, Z.; Grimshaw, R.; Mu, G., High-order rogue waves and their dynamics of the Fokas-Lenells equation revisited: a variable separation technique, Nonlinear Dyn., 98, 2067-77 (2019) · Zbl 1430.37081 · doi:10.1007/s11071-019-05308-8
[41] Lü, X.; Peng, M., Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model, Chaos, 23 (2013) · Zbl 1319.37010 · doi:10.1063/1.4790827
[42] Lü, X.; Tian, B., Novel behavior and properties for the nonlinear pulse propagation in optical fibers, Europhys. Lett., 97 (2012) · doi:10.1209/0295-5075/97/10005
[43] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.064105
[44] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139, 7-59 (2016) · Zbl 1373.35281 · doi:10.1111/sapm.12153
[45] Ablowitz, M. J.; Feng, B-F; Luo, X-D; Musslimani, Z. H., Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions, Stud. Appl. Math., 141, 267-307 (2018) · Zbl 1420.35304 · doi:10.1111/sapm.12222
[46] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal asymptotic reductions of physically significant nonlinear equations, J. Phys. A: Math. Theor., 52, 15LT02 (2019) · Zbl 1509.35271 · doi:10.1088/1751-8121/ab0e95
[47] Yang, B.; Yang, J. K., PT-symmetric nonlinear Schrödinger equation, Lett. Math. Phys., 109, 945-73 (2019) · Zbl 1412.35316 · doi:10.1007/s11005-018-1133-5
[48] Lou, S. Y., Prohibitions caused by nonlocality for nonlocal Boussinesq-KdV type systems, Stud. Appl. Math., 143, 123-38 (2019) · Zbl 1423.35313 · doi:10.1111/sapm.12265
[49] Lou, S. Y., Multi-place physics and multi-place nonlocal systems, Commun. Theor. Phys., 72 (2020) · Zbl 1451.81011 · doi:10.1088/1572-9494/ab770b
[50] Ablowitz, M. J.; Luo, X-D; Musslimani, Z. H., Discrete nonlocal nonlinear Schrödinger systems: integrability, inverse scattering and solitons, Nonlinearity, 33, 3653-707 (2020) · Zbl 1446.37062 · doi:10.1088/1361-6544/ab74ae
[51] Rao, J. G.; Cheng, Y.; Porsezian, K.; Mihalache, D.; He, J. S., PT-symmetric nonlocal Davey-Stewartson I equation: soliton solutions with nonzero background, Physica D, 401 (2020) · Zbl 1453.37068 · doi:10.1016/j.physd.2019.132180
[52] Zhou, Z-X, Darboux transformations and global explicit solutions for nonlocal Davey-Stewartson I equation, Stud. Appl. Math., 141, 186-204 (2018) · Zbl 1401.35262 · doi:10.1111/sapm.12219
[53] Gürses, M.; Pekcan, A.; Zheltukhin, K., Discrete symmetries and nonlocal reductions, Phys. Lett. A, 384 (2020) · Zbl 1448.37065 · doi:10.1016/j.physleta.2019.126065
[54] Wang, B.; Zhang, Z.; Li, B., Two types of smooth positons for nonlocal Fokas-Lenells equation, Int. J. Mod. Phys. B, 34 (2020) · Zbl 1443.35119 · doi:10.1142/S0217979220501489
[55] Yang, Y.; Suzuki, T.; Wang, J., Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 95 (2021) · Zbl 1458.35394 · doi:10.1016/j.cnsns.2020.105626
[56] Zhang, W-X; Liu, Y., Integrability and multisoliton solutions of the reverse space and/or time nonlocal Fokas-Lenells equation, Nonlinear Dyn., 108, 2531-49 (2022) · doi:10.1007/s11071-022-07322-9
[57] Fokas, A. S., Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29, 319-24 (2016) · Zbl 1339.37066 · doi:10.1088/0951-7715/29/2/319
[58] Zhang, D. J.; Euler, N.; Nucci, M. C., Wronskian Solutions of Integrable Systems, in Nonlinear Systems and Their Remarkable Mathematical Structures, vol 2, pp 415-44 (2020), CRC Press, Taylor & Francis
[59] Chen, K.; Deng, X.; Lou, S. Y.; Zhang, D-J, Solutions of nonlocal equations reduced from the AKNS hierarchy, Stud. Appl. Math., 141, 113-41 (2018) · Zbl 1398.35194 · doi:10.1111/sapm.12215
[60] Kaup, D. J.; Newell, A. C., An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 798-801 (1978) · Zbl 0383.35015 · doi:10.1063/1.523737
[61] Nimmo, J. J C., A bilinear Bäcklund transformation for the nonlinear Schrödinger equation, Phys. Lett. A, 99, 279-80 (1983) · doi:10.1016/0375-9601(83)90884-8
[62] Hirota, R., A new form of Bäcklund transformations and its relation to the inverse scattering problem, Prog. Theor. Phys., 52, 1498-512 (1974) · Zbl 1168.37322 · doi:10.1143/PTP.52.1498
[63] Chen, K.; Zhang, D-J, Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction, Appl. Math. Lett., 75, 82-88 (2018) · Zbl 1379.35289 · doi:10.1016/j.aml.2017.05.017
[64] Deng, X.; Lou, S. Y.; Zhang, D. J., Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrödinger equations, Appl. Math. Comput., 332, 477-83 (2018) · Zbl 1427.35252 · doi:10.1016/j.amc.2018.03.061
[65] Zhang, D. J., Notes on solutions in Wronskian form to soliton equations: Korteweg-de Vries-type (2006)
[66] Zhang, D-J; Zhao, S-L; Sun, Y-Y; Zhou, J., Solutions to the modified Korteweg-de Vries equation, Rev. Math. Phys., 26 (2014) · Zbl 1341.37049 · doi:10.1142/S0129055X14300064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.