×

A universal characterization of noncommutative motives and secondary algebraic \(K\)-theory. (English) Zbl 07899149

The authors provide a universal characterization of the construction that maps a scheme \(X\) to its stable \(\infty\)-category \(\text{Mot}(X)\) of noncommutative motives. This construction is inspired by the universal characterization of algebraic K-theory developed by Blumberg, Gepner, and Tabuada. The paper’s primary contribution is a corepresentability theorem for secondary K-theory, which the authors envision as a fundamental tool for constructing trace maps from secondary K-theory. To achieve this, they introduce a preliminary formalism of “stable \((\infty, 2)\)-categories”, with notable examples including quasicoherent or constructible sheaves of stable \(\infty\)-categories. Additionally, Mazel-Gee and Stern develop the rudiments of a theory of presentable enriched \(\infty\)-categories, and more specifically, a theory of presentable \((\infty, n)\)-categories which may be of independent interest. The paper is structured as follows:
1.
Introduction: Overview, background, motivation, main results, questions, and further directions.
2.
Stable \(2\)-categories and localization sequences: Definitions and properties of stable \(2\)-categories, 1-localization sequences, and \(2\)-localization sequences.
3.
From motives to K-theory: Discussion on motives, additive invariants, and the transition from motives to K-theory.
4.
From \(2\)-motives to secondary K-theory: Exploration of \((2,1)\)-motives, \((2,1)\)-additive invariants, and the transition from \((2,1)\)-motives to \((2,1)\)-ary K-theory and secondary K-theory.
5.
Two appendices about enriched category theory and higher category theory.

MSC:

18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
19D99 Higher algebraic \(K\)-theory
18D20 Enriched categories (over closed or monoidal categories)
18N25 Categorification
18N65 \((\infty, n)\)-categories and \((\infty,\infty)\)-categories
55P42 Stable homotopy theory, spectra

References:

[1] 10.1112/jtopol/jtp011 · Zbl 1232.19002 · doi:10.1112/jtopol/jtp011
[2] 10.1017/is013010011jkt243 · Zbl 1317.19006 · doi:10.1017/is013010011jkt243
[3] 10.1007/BF02392794 · Zbl 1019.18008 · doi:10.1007/BF02392794
[4] 10.2140/gt.2012.16.2037 · Zbl 1260.19004 · doi:10.2140/gt.2012.16.2037
[5] 10.1016/j.aim.2018.05.031 · Zbl 1395.58016 · doi:10.1016/j.aim.2018.05.031
[6] 10.1017/CBO9780511526398.005 · doi:10.1017/CBO9780511526398.005
[7] 10.1007/s10485-009-9189-0 · Zbl 1220.57019 · doi:10.1007/s10485-009-9189-0
[8] 10.1112/jtopol/jtv042 · Zbl 1364.19001 · doi:10.1112/jtopol/jtv042
[9] 10.1090/jams/972 · Zbl 1507.18025 · doi:10.1090/jams/972
[10] ; Ben-Zvi, David; Nadler, David, Nonlinear traces, Derived algebraic geometry. Panor. Synthèses, 55, 39, 2021 · Zbl 1472.14012
[11] 10.1090/S0894-0347-10-00669-7 · Zbl 1202.14015 · doi:10.1090/S0894-0347-10-00669-7
[12] 10.2140/gt.2019.23.101 · Zbl 1412.19001 · doi:10.2140/gt.2019.23.101
[13] 10.2140/gt.2013.17.733 · Zbl 1267.19001 · doi:10.2140/gt.2013.17.733
[14] 10.1155/S1073792804140385 · Zbl 1079.18008 · doi:10.1155/S1073792804140385
[15] 10.2140/agt.2019.19.743 · Zbl 1417.53093 · doi:10.2140/agt.2019.19.743
[16] 10.21136/HS.2021.11 · doi:10.21136/HS.2021.11
[17] 10.1016/j.aim.2010.05.018 · Zbl 1208.19003 · doi:10.1016/j.aim.2010.05.018
[18] 10.1090/tran/7648 · Zbl 1451.19006 · doi:10.1090/tran/7648
[19] 10.2140/agt.2022.22.815 · Zbl 1514.18020 · doi:10.2140/agt.2022.22.815
[20] 10.1016/j.aim.2010.08.016 · Zbl 1223.55004 · doi:10.1016/j.aim.2010.08.016
[21] 10.1112/S0010437X11005380 · Zbl 1247.19001 · doi:10.1112/S0010437X11005380
[22] ; Dundas, Björn Ian; Goodwillie, Thomas G.; McCarthy, Randy, The local structure of algebraic K-theory. Algebra and Applications, 18, 2013 · Zbl 1272.55002
[23] 10.1007/978-3-030-27124-4 · Zbl 1459.18001 · doi:10.1007/978-3-030-27124-4
[24] 10.1093/imrn/rnab179 · Zbl 1511.18009 · doi:10.1093/imrn/rnab179
[25] 10.1090/conm/643/12899 · Zbl 1346.14004 · doi:10.1090/conm/643/12899
[26] 10.1016/j.aim.2007.10.004 · Zbl 1136.18001 · doi:10.1016/j.aim.2007.10.004
[27] 10.1016/j.aim.2015.02.007 · Zbl 1342.18009 · doi:10.1016/j.aim.2015.02.007
[28] 10.4007/annals.2022.196.3.6 · Zbl 1541.55010 · doi:10.4007/annals.2022.196.3.6
[29] 10.4310/HHA.2016.v18.n1.a5 · Zbl 1375.18050 · doi:10.4310/HHA.2016.v18.n1.a5
[30] 10.1016/j.aim.2023.108941 · Zbl 1519.18016 · doi:10.1016/j.aim.2023.108941
[31] 10.1007/s002220050178 · Zbl 0884.19004 · doi:10.1007/s002220050178
[32] 10.1016/0040-9383(96)00003-1 · Zbl 0866.55002 · doi:10.1016/0040-9383(96)00003-1
[33] 10.4007/annals.2003.158.1 · Zbl 1033.19002 · doi:10.4007/annals.2003.158.1
[34] 10.1016/j.ansens.2003.06.001 · Zbl 1062.19003 · doi:10.1016/j.ansens.2003.06.001
[35] 10.1016/j.aim.2020.107129 · Zbl 1454.18003 · doi:10.1016/j.aim.2020.107129
[36] 10.1016/j.aim.2017.01.008 · Zbl 1361.14014 · doi:10.1016/j.aim.2017.01.008
[37] 10.1112/s0010437x20007642 · doi:10.1112/s0010437x20007642
[38] 10.1016/S0040-9383(96)00040-7 · Zbl 0881.55013 · doi:10.1016/S0040-9383(96)00040-7
[39] ; Lauda, Aaron D., An introduction to diagrammatic algebra and categorified quantum 𝔰𝔩2, Bull. Inst. Math. Acad. Sin. (N.S.), 7, 2, 165, 2012 · Zbl 1280.81073
[40] 10.1007/BFb0075778 · Zbl 0611.55001 · doi:10.1007/BFb0075778
[41] 10.2140/akt.2020.5.1 · Zbl 1440.19002 · doi:10.2140/akt.2020.5.1
[42] ; Looijenga, Eduard, Motivic measures, Séminaire Bourbaki, 1999/2000. Astérisque, 276, 267, 2002 · Zbl 0996.14011
[43] 10.1515/9781400830558 · Zbl 1175.18001 · doi:10.1515/9781400830558
[44] 10.4310/hha.2021.v23.n1.a20 · doi:10.4310/hha.2021.v23.n1.a20
[45] ; Mazel-Gee, Aaron, Quillen adjunctions induce adjunctions of quasicategories, New York J. Math., 22, 57, 2016 · Zbl 1346.18003
[46] 10.4171/108 · Zbl 1238.18001 · doi:10.4171/108
[47] 10.1090/S0894-0347-08-00612-7 · Zbl 1227.32019 · doi:10.1090/S0894-0347-08-00612-7
[48] 10.1353/ajm.2022.0041 · doi:10.1353/ajm.2022.0041
[49] 10.4310/MRL.2002.v9.n4.a8 · Zbl 1054.14505 · doi:10.4310/MRL.2002.v9.n4.a8
[50] 10.2140/gt.2010.14.521 · Zbl 1203.18015 · doi:10.2140/gt.2010.14.521
[51] 10.1016/j.aim.2014.10.011 · Zbl 1315.14030 · doi:10.1016/j.aim.2014.10.011
[52] 10.2140/gt.2003.7.155 · Zbl 1130.19300 · doi:10.2140/gt.2003.7.155
[53] 10.1017/CBO9780511526398.013 · doi:10.1017/CBO9780511526398.013
[54] 10.1007/BF01394024 · Zbl 0514.18008 · doi:10.1007/BF01394024
[55] 10.1215/00127094-2008-049 · Zbl 1166.18007 · doi:10.1215/00127094-2008-049
[56] 10.2140/ant.2016.10.887 · Zbl 1352.14007 · doi:10.2140/ant.2016.10.887
[57] 10.4171/jncg/379 · doi:10.4171/jncg/379
[58] 10.1007/s00222-006-0025-y · Zbl 1118.18010 · doi:10.1007/s00222-006-0025-y
[59] 10.1007/978-3-642-15708-0 · Zbl 1202.19001 · doi:10.1007/978-3-642-15708-0
[60] 10.1007/978-3-642-01200-6_11 · Zbl 1177.14042 · doi:10.1007/978-3-642-01200-6_11
[61] 10.1007/s00029-014-0158-6 · Zbl 1333.19006 · doi:10.1007/s00029-014-0158-6
[62] 10.1007/BFb0074449 · doi:10.1007/BFb0074449
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.