×

Rational algebraic \(K\)-theory of topological \(K\)-theory. (English) Zbl 1260.19004

In this paper the authors study the algebraic \(K\)-theory \(K(ku)\) of the connective complex \(K\)-theory spectrum \(ku\), with the aim of computing it rationally. There are maps \[ BBU_\otimes \to BGL_1(ku) \to BGL_\infty(ku) \to BGL_\infty(ku)^+ \] of spectra induced by units where \(BBU_\otimes\) denotes the first delooping of the space \(BU_\otimes\) representing virtual compex line bundles. Write \(w : BBU_\otimes \to K(ku)\) for the composition of these maps and the inclusion \[ BGL_\infty(ku)^+\cong \{ 1 \}\times BGL_\infty(ku)^+ \to \mathbb Z\times BGL_\infty(ku)^+\simeq K(ku). \] Let \(\pi : K(ku) \to K(\mathbb Z)\) be the map induced in \(K\)-theory by the zeroth Postnikov section \(ku \to H\mathbb Z\). The authors prove that after rationalization, the sequence \[ BBU_\otimes \overset{w}{\longrightarrow} K(ku) \overset{\pi}{\longrightarrow} K(\mathbb Z) \] is a split homotopy fibre-sequence where the splitting of \(\pi\) is given by the rationalization of \(K(S) \to K(ku)\) induced by the unit \(S \to ku\). Also they show that the usual matrix determinant induces a rational determinant map \(\det_\mathbb Q:BGL_\infty(ku) \to (BBU_\otimes)_\mathbb Q\), which provides a splitting of \(w\). In connection with this map it is noted that in the integral case such a determinant map does not exist.
Let \(\mathcal{E} : X \to K(ku)\) be a map from a base space \(X\), which may be thought of as a virtual two-vector bundle over \(X\) introduced by N. A. Baas et al. in [Lond. Math. Soc. Lect. Note Ser. 308, 18–45 (2004; Zbl 1106.55004)]. Using the splitting of \(K(ku)_\mathbb Q\) above, the authors provide a geometric interpretation of this bundle. It is stated as follows. We call the composite map \(|\mathcal{E}|=\det_\mathbb Q\circ \mathcal{E} : X \to (BBU_\otimes)_ Q\) the rational determinant bundle of \(\mathcal{E}\) and call a virtual line bundle \(\mathcal{H} : \mathcal{L}X \to BU_\otimes\) over the free loop space \(\mathcal{L}X=\mathrm{Map}(S^1, X)\) the “anomaly bundle”. Then to specify the rational determinant bundle is equivalent to specifying the rational anomaly bundle.
This paper also contains a computation of the rational algebraic \(K\)-theory \(K(KU)\) of the periodic complex \(K\)-theory spectrum \(KU\).

MSC:

19L99 Topological \(K\)-theory
55N15 Topological \(K\)-theory
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
19D99 Higher algebraic \(K\)-theory
19D55 \(K\)-theory and homology; cyclic homology and cohomology

Citations:

Zbl 1106.55004

References:

[1] C Ausoni, Topological Hochschild homology of connective complex \(K\)-theory, Amer. J. Math. 127 (2005) 1261 · Zbl 1107.55006 · doi:10.1353/ajm.2005.0036
[2] C Ausoni, On the algebraic \(K\)-theory of the complex \(K\)-theory spectrum, Invent. Math. 180 (2010) 611 · Zbl 1204.19002 · doi:10.1007/s00222-010-0239-x
[3] C Ausoni, B I Dundas, J Rognes, Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere, Doc. Math. 13 (2008) 795 · Zbl 1203.19002
[4] C Ausoni, J Rognes, Algebraic \(K\)-theory of topological \(K\)-theory, Acta Math. 188 (2002) 1 · Zbl 1019.18008 · doi:10.1007/BF02392794
[5] N A Baas, B I Dundas, B Richter, J Rognes, Stable bundles over rig categories, J. Topol. 4 (2011) 623 · Zbl 1227.19002 · doi:10.1112/jtopol/jtr016
[6] N A Baas, B I Dundas, J Rognes, Two-vector bundles and forms of elliptic cohomology, London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 18 · Zbl 1106.55004 · doi:10.1017/CBO9780511526398.005
[7] A J Blumberg, M A Mandell, The localization sequence for the algebraic \(K\)-theory of topological \(K\)-theory, Acta Math. 200 (2008) 155 · Zbl 1149.18008 · doi:10.1007/s11511-008-0025-4
[8] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic \(K\)-theory of spaces, Invent. Math. 111 (1993) 465 · Zbl 0804.55004 · doi:10.1007/BF01231296
[9] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 · Zbl 0316.57026
[10] M Brun, Z Fiedorowicz, R M Vogt, On the multiplicative structure of topological Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633 · Zbl 1141.55005 · doi:10.2140/agt.2007.7.1633
[11] J L Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics 107, Birkhäuser (1993) · Zbl 0823.55002
[12] R L Cohen, J D S Jones, Algebraic \(K\)-theory of spaces and the Novikov conjecture, Topology 29 (1990) 317 · Zbl 0708.19002 · doi:10.1016/0040-9383(90)90002-2
[13] B I Dundas, The cyclotomic trace for \(S\)-algebras, J. London Math. Soc. 70 (2004) 659 · Zbl 1069.19005 · doi:10.1112/S0024610704005745
[14] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, American Mathematical Society (1997) · Zbl 0894.55001
[15] T G Goodwillie, Relative algebraic \(K\)-theory and cyclic homology, Ann. of Math. 124 (1986) 347 · Zbl 0627.18004 · doi:10.2307/1971283
[16] L Hesselholt, On the \(p\)-typical curves in Quillen’s \(K\)-theory, Acta Math. 177 (1996) 1 · Zbl 0892.19003 · doi:10.1007/BF02392597
[17] L Hesselholt, I Madsen, On the \(K\)-theory of local fields, Ann. of Math. 158 (2003) 1 · Zbl 1033.19002 · doi:10.4007/annals.2003.158.1
[18] M J Hopkins, Algebraic topology and modular forms, Higher Ed. Press (2002) 291 · Zbl 1031.55007
[19] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 · Zbl 0931.55006 · doi:10.1090/S0894-0347-99-00320-3
[20] W C Hsiang, R E Staffeldt, A model for computing rational algebraic \(K\)-theory of simply connected spaces, Invent. Math. 68 (1982) 227 · Zbl 0505.57011 · doi:10.1007/BF01394056
[21] I K\vz, J P May, Operads, algebras, modules and motives, Astérisque 233 (1995) · Zbl 0840.18001
[22] P S Landweber, D C Ravenel, R E Stong, Periodic cohomology theories defined by elliptic curves, Contemp. Math. 181, Amer. Math. Soc. (1995) 317 · Zbl 0920.55005 · doi:10.1090/conm/181/02040
[23] M A Mandell, Topological André-Quillen cohomology and \(E_\infty\) André-Quillen cohomology, Adv. Math. 177 (2003) 227 · Zbl 1027.55009 · doi:10.1016/S0001-8708(02)00017-8
[24] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 · Zbl 1017.55004 · doi:10.1112/S0024611501012692
[25] J P May, \(E_{\infty }\) ring spaces and \(E_{\infty }\) ring spectra, Lecture Notes in Mathematics 577, Springer (1977) · Zbl 0345.55007
[26] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211 · Zbl 0163.28202 · doi:10.2307/1970615
[27] G Moore, \(K\)-theory from a physical perspective, London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 194 · Zbl 1090.19005 · doi:10.1017/CBO9780511526398.011
[28] J Rognes, Trace maps from the algebraic \(K\)-theory of the integers (after Marcel Bökstedt), J. Pure Appl. Algebra 125 (1998) 277 · Zbl 0893.19001 · doi:10.1016/S0022-4049(96)00119-3
[29] J Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008) · Zbl 1166.55001
[30] C Schlichtkrull, Units of ring spectra and their traces in algebraic \(K\)-theory, Geom. Topol. 8 (2004) 645 · Zbl 1052.19001 · doi:10.2140/gt.2004.8.645
[31] S Schwede, Stable homotopical algebra and \(\Gamma\)-spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 329 · Zbl 0920.55011 · doi:10.1017/S0305004198003272
[32] G Segal, Elliptic cohomology (after Landweber-Stong, Ochanine, Witten, and others), Astérisque 161-162 (1988) 187 · Zbl 0686.55003
[33] B Toën, G Vezzosi, Brave new algebraic geometry and global derived moduli spaces of ring spectra, London Math. Soc. Lecture Note Ser. 342, Cambridge Univ. Press (2007) 325 · Zbl 1236.14022 · doi:10.1017/CBO9780511721489.018
[34] F Waldhausen, Algebraic \(K\)-theory of topological spaces I, Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 35 · Zbl 0414.18010
[35] F Waldhausen, Algebraic \(K\)-theory of spaces, a manifold approach, CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 141 · Zbl 0595.57026
[36] F Waldhausen, Algebraic \(K\)-theory of spaces, Lecture Notes in Math. 1126, Springer (1985) 318 · Zbl 0579.18006 · doi:10.1007/BFb0074449
[37] F Waldhausen, On the construction of the Kan loop group, Doc. Math. 1 (1996) 121 · Zbl 0874.55008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.