×

Global behavior in a two-species chemotaxis-competition system with signal-dependent sensitivities and nonlinear productions. (English) Zbl 07898800

Summary: This article considers a two competitive biological species system involving signal-dependent motilities and sensitivities and nonlinear productions \[ \begin{cases} u_t = \nabla \cdot \big (D_1(v)\nabla u-uS_1(v)\nabla v\big )+\mu_1u(1-u^{\alpha_1}-a_1w),\quad & x\in \Omega,\ t>0,\\ v_t=\Delta v-v+b_1w^{\gamma_1}, & x\in \Omega,\ t>0,\\ w_t = \nabla \cdot \big (D_2(z)\nabla w-wS_2(z)\nabla z\big )+\mu_2w(1-w^{\alpha_2}-a_2u), & x\in \Omega,\ t>0,\\ z_t=\Delta z-z+b_2u^{\gamma_2}, & x\in \Omega,\ t>0 \end{cases} \] in a bounded and smooth domain \(\Omega \subset \mathbb{R}^2\), where the parameters \(\mu_i, \alpha_i, a_i, b_i, \gamma_i\) \((i=1,2)\) are positive constants, and the functions \(D_1(v),S_1(v),D_2(z),S_2(z)\) fulfill the following hypotheses: \( \Diamond D_i(\psi),S_i(\psi)\in C^2([0,\infty)), D_i(\psi),S_i(\psi)>0\) for all \(\psi \ge 0, D_i^{\prime}(\psi)<0\) and \(\underset{\psi \rightarrow \infty}{\lim} D_i(\psi)=0; \Diamond \underset{\psi \rightarrow \infty}{\lim} \frac{S_i(\psi)}{D_i(\psi)}\) and \(\underset{\psi \rightarrow \infty}{\lim} \frac{D^{\prime}_i(\psi)}{D_i(\psi)}\) exist. We first confirm the global boundedness of the classical solution provided that the additional conditions \(2\gamma_1\le 1+\alpha_2\) and \(2\gamma_2\le 1+\alpha_1\) hold. Moreover, by constructing several suitable Lyapunov functionals, it is demonstrated that the global solution exponentially or algebraically converges to the constant stationary solutions and the corresponding convergence rates are determined under some specific stress conditions.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Keller, EF; Segel, LA, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 3, 399-415, 1970 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[2] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12, 159-177, 2001 · Zbl 1017.92006 · doi:10.1017/S0956792501004363
[3] Li, T.; Frassu, S.; Viglialoro, G., Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74, 3, 109, 2023 · Zbl 1518.35594 · doi:10.1007/s00033-023-01976-0
[4] Lin, K.; Mu, C., Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 36, 9, 5025-5046, 2016 · Zbl 1352.35067 · doi:10.3934/dcds.2016018
[5] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differ. Equ., 35, 8, 1516-1537, 2010 · Zbl 1290.35139 · doi:10.1080/03605300903473426
[6] Lankeit, J., Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258, 4, 1158-1191, 2015 · Zbl 1319.35085 · doi:10.1016/j.jde.2014.10.016
[7] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40, 3, 411-433, 1997 · Zbl 0901.35104
[8] Tao, Y., Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18, 10, 2705-2722, 2013 · Zbl 1282.35189
[9] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 12, 2889-2905, 2010 · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[10] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 1, 52-107, 2005 · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[11] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100, 5, 748-767, 2013 · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[12] Fu, X.; Tang, L-H; Liu, C.; Huang, J-D; Hwa, T.; Lenz, P., Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108, 19, 2012 · doi:10.1103/PhysRevLett.108.198102
[13] Yoon, C.; Kim, Y-J, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149, 1, 101-123, 2017 · Zbl 1398.35110 · doi:10.1007/s10440-016-0089-7
[14] Tao, Y.; Winkler, M., Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27, 9, 1645-1683, 2017 · Zbl 1516.35092 · doi:10.1142/S0218202517500282
[15] Jin, H-Y; Kim, Y-J; Wang, Z-A, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78, 3, 1632-1657, 2018 · Zbl 1393.35100 · doi:10.1137/17M1144647
[16] Jin, H-Y, Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system with signal-dependent diffusion and sensitivity, Discrete Contin. Dyn. Syst., 38, 7, 3595-3616, 2018 · Zbl 1397.35029 · doi:10.3934/dcds.2018155
[17] Winkler, M., A result on parabolic gradient regularity in Orlicz spaces and application to absorption-induced blow-up prevention in a Keller-Segel-type cross-diffusion system, Int. Math. Res. Not. IMRN, 2023, 19, 16336-16393, 2023 · Zbl 1532.35107 · doi:10.1093/imrn/rnac286
[18] Liu, D-M; Tao, Y-S, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univ. Ser. A, 31, 4, 379-388, 2016 · Zbl 1374.35009 · doi:10.1007/s11766-016-3386-z
[19] Winkler, M., A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31, 5, 2031-2056, 2018 · Zbl 1391.35240 · doi:10.1088/1361-6544/aaaa0e
[20] Tao, Y.; Winkler, M., Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20, 9, 3165-3183, 2015 · Zbl 1329.35075 · doi:10.3934/dcdsb.2015.20.3165
[21] Yu, H.; Wang, W.; Zheng, S., Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals, Nonlinearity, 31, 2, 502-514, 2018 · Zbl 1382.35057 · doi:10.1088/1361-6544/aa96c9
[22] Li, X.; Wang, Y., Boundedness in a two-species chemotaxis parabolic system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 22, 7, 2717-2729, 2017 · Zbl 1378.35169
[23] Zheng, J., Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topol. Methods Nonlinear Anal., 49, 2, 463-480, 2017 · Zbl 1377.35247
[24] Zhong, H., Boundedness in a quasilinear two-species chemotaxis system with two chemicals in higher dimensions, J. Math. Anal. Appl., 500, 1, 2021 · Zbl 1465.35380 · doi:10.1016/j.jmaa.2021.125130
[25] Zhang, Q.; Liu, X.; Yang, X., Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals, J. Math. Phys., 58, 11, 2017 · Zbl 1387.92014 · doi:10.1063/1.5011725
[26] Zheng, P.; Mu, C.; Mi, Y., Global stability in a two-competing-species chemotaxis system with two chemicals, Differ. Integral Equ., 31, 7-8, 547-558, 2018 · Zbl 1463.35090
[27] Zhang, Q., Competitive exclusion for a two-species chemotaxis system with two chemicals, Appl. Math. Lett., 83, 27-32, 2018 · Zbl 1524.92023 · doi:10.1016/j.aml.2018.03.012
[28] Tu, X.; Mu, C.; Zheng, P.; Lin, K., Global dynamics in a two-species chemotaxis-competition system with two signals, Discrete Contin. Dyn. Syst., 38, 7, 3617-3636, 2018 · Zbl 1396.35032 · doi:10.3934/dcds.2018156
[29] Black, T., Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. Syst. Ser. B, 22, 4, 1253-1272, 2017 · Zbl 1360.35084
[30] Qiu, H.; Guo, S., Global existence and stability in a two-species chemotaxis system, Discrete Contin. Dyn. Syst. Ser. B, 24, 4, 1569-1587, 2019 · Zbl 1415.92040
[31] Wang, L.; Zhang, J.; Mu, C.; Hu, X., Boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 25, 1, 191-221, 2020 · Zbl 1426.35133
[32] Jin, H-Y; Liu, Z.; Shi, S.; Xu, J., Boundedness and stabilization in a two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity, J. Differ. Equ., 267, 1, 494-524, 2019 · Zbl 1415.35044 · doi:10.1016/j.jde.2019.01.019
[33] Miao, L.; Fu, S., Global behavior of a two-species predator-prey chemotaxis model with signal-dependent diffusion and sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 28, 8, 4344-4365, 2023 · Zbl 1514.35053 · doi:10.3934/dcdsb.2023018
[34] Tello, JI; Winkler, M., Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25, 5, 1413-1425, 2012 · Zbl 1260.92014 · doi:10.1088/0951-7715/25/5/1413
[35] Wang, D.; Zeng, F.; Jiang, M., Global existence and boundedness of solutions to a two-species chemotaxis-competition system with singular sensitivity and indirect signal production, Z. Angew. Math. Phys., 74, 1, 33, 2023 · Zbl 1504.35081 · doi:10.1007/s00033-022-01921-7
[36] Xiang, Y.; Zheng, P.; Xing, J., Boundedness and stabilization in a two-species chemotaxis-competition system with indirect signal production, J. Math. Anal. Appl., 507, 2, 2022 · Zbl 1480.35384 · doi:10.1016/j.jmaa.2021.125825
[37] Xiang, Y.; Zheng, P., On a two-species chemotaxis-competition system with indirect signal consumption, Z. Angew. Math. Phys., 73, 2, 50, 2022 · Zbl 1485.35041 · doi:10.1007/s00033-022-01680-5
[38] Liu, A.; Dai, B., Boundedness and stabilization in a two-species chemotaxis system with two chemicals, J. Math. Anal. Appl., 506, 1, 2022 · Zbl 1512.35083 · doi:10.1016/j.jmaa.2021.125609
[39] Zheng, P.; Mu, C., Global boundedness in a two-competing-species chemotaxis system with two chemicals, Acta Appl. Math., 148, 1, 157-177, 2017 · Zbl 1360.92022 · doi:10.1007/s10440-016-0083-0
[40] Tao, Y., Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381, 2, 521-529, 2011 · Zbl 1225.35118 · doi:10.1016/j.jmaa.2011.02.041
[41] Kowalczyk, R.; Szymańska, Z., On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343, 1, 379-398, 2008 · Zbl 1143.35333 · doi:10.1016/j.jmaa.2008.01.005
[42] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 1, 692-715, 2012 · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[43] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 2, 553-583, 2016 · Zbl 1345.35117 · doi:10.1512/iumj.2016.65.5776
[44] Fu, S.; Miao, L., Global existence and asymptotic stability in a predator-prey chemotaxis model, Nonlinear Anal. Real World Appl., 54, 2020 · Zbl 1436.35228 · doi:10.1016/j.nonrwa.2019.103079
[45] Porzio, MM; Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 1, 146-178, 1993 · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[46] Ladyženskaja, OA; Solonnikov, VA; Ural’ceva, NN, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 1968, Providence: American Mathematical Society, Providence · Zbl 0174.15403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.