×

On a two-species chemotaxis-competition system with indirect signal consumption. (English) Zbl 1485.35041

Summary: This paper deals with a two-competing-species chemotaxis system with indirect signal consumption \[ \begin{cases} \begin{aligned} &u_t=d_1\Delta u-\chi_1\nabla \cdot (u\nabla w)+\mu_1u(1-u-a_1v),&(x,t)\in \Omega \times (0,\infty ),\\ &v_t=d_2\Delta v-\chi_2\nabla \cdot (v\nabla w)+\mu_2v(1-v-a_2u),&(x,t)\in \Omega \times (0,\infty ),\\ &w_t=\Delta w-wz,&(x,t)\in \Omega \times (0,\infty ),\\ &z_t=\Delta z-z+u+v,&(x,t)\in \Omega \times (0,\infty ),\\ &\frac{{\partial u}}{{\partial \nu }} = \frac{{\partial v}}{{\partial \nu }} = \frac{{\partial w}}{{\partial \nu }} = \frac{{\partial z}}{{\partial \nu }} = 0,&(x,t)\in \partial \Omega \times (0,\infty ),\\ &\left( {u, v, w, z} \right) \left( {x,0} \right) = \left( {{u_0}\left( x \right) , {v_0}\left( x \right) ,{w_0}\left( x \right) , {z_0}\left( x \right) } \right) ,&x\in \Omega ,\ \end{aligned} \end{cases}\] under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset{\mathbb{R}}^n(n\le 2)\), with the nonnegative initial data \(\left( {u_0, v_0, w_0, z_0} \right) \in{C^0}\left( {{{\bar{\Omega }}} } \right) \times{C^0}\left( {{{\bar{\Omega }}} } \right) \times{W^{1,\infty }}\left( \Omega \right) \times{W^{1,\infty }}\left( \Omega \right) \), where \(\chi_i>0, d_i>0, a_i>0\) and \(\mu_i>0 (i=1,2)\). It is shown that the system has a global bounded classical solution for arbitrary size of \(\mu_1, \mu_2>0\). Additionally, we consider the asymptotic stabilization of solutions to the above system as follows:
When \(a_1, a_2 \in (0,1)\), the global bounded classical solution \((u, v, w, z)\) exponentially converges to \(\Big (\frac{1-a_1}{1-a_1 a_2}, \frac{1-a_2}{1-a_1 a_2}, 0, \frac{2-a_1-a_2}{1-a_1 a_2}\Big )\) in the \(L^{\infty } \)-norm as \(t \rightarrow \infty \);
When \(a_1>1>a_2>0\) and \(a_1a_2<1\), the global bounded classical solution \((u, v, w, z)\) exponentially converges to (0, 1, 0, 1) in the \(L^{\infty } \)-norm as \(t \rightarrow \infty \);
When \(a_1=1>a_2>0\), the global bounded classical solution \((u, v, w, z)\) polynomially converges to (0, 1, 0, 1) in the \(L^{\infty } \)-norm as \(t \rightarrow \infty \).

MSC:

35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117
[2] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 9, 1663-1763 (2015) · Zbl 1326.35397
[3] Black, T., Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. Syst. Ser. B, 22, 1253-1272 (2017) · Zbl 1360.35084
[4] Cao, X.; Kurima, S.; Mizukami, M., Global existence an asymptotic behavior of classical solutions for a 3d two-species chemotaxis-stokes system with competitive kinetics, Math. Methods Appl. Sci., 41, 3138-3154 (2018) · Zbl 1393.35083
[5] Ding, M.; Wang, W., Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, Discrete Contin. Dyn. Syst. Ser. B, 24, 4665-4684 (2019) · Zbl 1429.35039
[6] Fuest, M., Analysis of a chemotaxis model with indirect signal absorption, J. Differ. Equ., 267, 4778-4806 (2019) · Zbl 1419.35094
[7] Fujie, K.; Ito, A.; Winkler, M.; Yokota, T., Stabilization in a chemotaxis model for tumorinvasion, Discrete Contin. Dyn. Syst., 36, 1, 151-169 (2016) · Zbl 1322.35059
[8] Hirata, M.; Kurima, S.; Mizukami, M.; Yokota, T., Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier—Stokes system with competitive kinetics, J. Differ. Equ., 263, 470-490 (2017) · Zbl 1362.35049
[9] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12, 159-177 (2001) · Zbl 1017.92006
[10] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. DMV., 105, 3, 103-165 (2003) · Zbl 1071.35001
[11] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065
[12] Hu, B.; Tao, Y., To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26, 2111-2128 (2016) · Zbl 1351.35076
[13] Jin, H.; Xiang, T., Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24, 4, 1919-1942 (2019) · Zbl 1420.35439
[14] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[15] Lady \({\check{z}}\) enskaja, O., Solonnikov, V., Ural’ceva, N.: Linear and Quasi-Linear Equations of Parabolic Type. AMS, Providence (1968) · Zbl 0174.15403
[16] Lin, K.; Mu, C.; Wang, L., Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38, 5085-5096 (2015) · Zbl 1334.92059
[17] Li, X.; Wang, Y., On a fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics, J. Math. Anal. Appl., 471, 584-598 (2019) · Zbl 1419.35096
[18] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcia. Ekvac., 40, 411-433 (1997) · Zbl 0901.35104
[19] Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20, 4, 733-737 (1966) · Zbl 0163.29905
[20] Osakiand, K.; Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44, 441-469 (2001) · Zbl 1145.37337
[21] Qiu, S.; Mu, C.; Wang, L., Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production, Comput. Math. Appl., 75, 3213-3223 (2018) · Zbl 1409.92025
[22] Stinner, C.; Surulescu, C.; Winkler, M., Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIMA J. Math. Anal., 46, 1969-2007 (2014) · Zbl 1301.35189
[23] Stinner, C.; Tello, J.; Winkler, M., Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68, 1607-1626 (2014) · Zbl 1319.92050
[24] Tao, Y., Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381, 521-529 (2011) · Zbl 1225.35118
[25] Tao, Y.; Winkler, M., Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252, 2520-2543 (2012) · Zbl 1268.35016
[26] Tao, Y.; Winkler, M., Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19, 3641-3678 (2017) · Zbl 1406.35068
[27] Tello, J.; Winkler, M., A chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32, 49-877 (2007) · Zbl 1121.37068
[28] Tello, J.; Winkler, M., Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25, 1413-1425 (2012) · Zbl 1260.92014
[29] Tu, X.; Mu, C.; Zheng, P.; Lin, K., Global dynamics in a two-species chemotaxis-competition system with two signals, Discrete Contin. Dyn. Syst., 38, 3617-3636 (2018) · Zbl 1396.35032
[30] Wang, L.; Mu, C.; Hu, X.; Zheng, P., Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 264, 3369-3401 (2018) · Zbl 1380.35025
[31] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004
[32] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 8, 1516-1537 (2010) · Zbl 1290.35139
[33] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pure Appl., 100, 5, 748-767 (2013) · Zbl 1326.35053
[34] Xiang, Y.; Zheng, P.; Xing, J., Boundedness and stabilization in a two-species chemotaxis-competition system with indirect signal production, J. Math. Anal. Appl., 507 (2022) · Zbl 1480.35384
[35] Zhang, W.; Niu, P.; Liu, S., Large time behavior in chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal. Real World Appl., 50, 484-497 (2019) · Zbl 1435.35068
[36] Zhang, Q.; Li, Y., Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant, J. Math. Phys., 56, 8, 081506 (2015) · Zbl 1322.35060
[37] Zhang, Q.; Li, Y., Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66, 83-93 (2015) · Zbl 1333.35097
[38] Zheng, P.; Mu, C.; Hu, X., Persistence property in a two-species chemotaxis system with two signals, J. Math. Phys., 58, 11, 111501 (2017) · Zbl 1383.92021
[39] Zheng, P.; Mu, C.; Mi, Y., Global stability in a two-competing-species chemotaxis system with two chemicals, Differ. Integr. Equ., 31, 547-558 (2018) · Zbl 1463.35090
[40] Zheng, P.; Willie, R.; Mu, C., Global boundedness and stabilization in a two competing-species chemotaxis-fluid system with two chemicals, J. Dyn. Differ. Equ., 32, 1371-1399 (2020) · Zbl 1446.35237
[41] Zheng, P., Xiang, Y., Xing, J.: On a two-species chemotaxis system with indirect signal production and general competition terms. Preprint · Zbl 1480.35384
[42] Zheng, P.; Xing, J., Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis growth system with indirect signal consumption, Z. Angew. Math. Phys., 71, 98 (2020) · Zbl 1441.35140
[43] Zheng, P., Asymptotic stability in a chemotaxis-competition system with indirect signal production, Discrete Contin. Dyn. Syst., 41, 1207-1223 (2021) · Zbl 1460.35360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.