×

A combination technique for optimal control problems constrained by random PDEs. (English) Zbl 07896957

Summary: We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equations. The method requires to solve the OCP for several low-fidelity spatial grids and quadrature formulae for the objective functional. All the computed solutions are then linearly combined to get a final approximation which, under suitable regularity assumptions, preserves the same accuracy of fine tensor product approximations, while drastically reducing the computational cost. The combination technique involves only tensor product quadrature formulae, and thus the discretized OCPs preserve the (possible) convexity of the continuous OCP. Hence, the combination technique avoids the inconveniences of multilevel Monte Carlo and/or sparse grids approaches but remains suitable for high-dimensional problems. The manuscript presents an a priori procedure to choose the most important mixed differences and an analysis stating that the asymptotic complexity is exclusively determined by the spatial solver. Numerical experiments validate the results.

MSC:

49K45 Optimality conditions for problems involving randomness
49K20 Optimality conditions for problems involving partial differential equations
49M41 PDE constrained optimization (numerical aspects)
65K05 Numerical mathematical programming methods
65D40 Numerical approximation of high-dimensional functions; sparse grids
90C15 Stochastic programming

References:

[1] Babuška, I., Nobile, F., and Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Rev., 52 (2010), pp. 317-355, doi:10.1137/100786356. · Zbl 1226.65004
[2] Bäck, J., Nobile, F., Tamellini, L., and Tempone, R., Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison, in Spectral and High Order Methods for Partial Differential Equations, Springer, 2011, pp. 43-62. · Zbl 1216.65004
[3] Beck, J., Tamellini, L., and Tempone, R., IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains, Comput. Methods Appl. Mech. Engrg., 351 (2019), pp. 330-350. · Zbl 1441.65092
[4] Brezzi, F., Rappaz, J., and Raviart, P.-A., Finite dimensional approximation of nonlinear problems: Part I: Branches of nonsingular solutions, Numer. Math., 36 (1980/81), pp. 1-25. · Zbl 0488.65021
[5] Bungartz, H.-J. and Griebel, M., Sparse grids, Acta Numer., 13 (2004), pp. 147-269. · Zbl 1118.65388
[6] Chkifa, A., Cohen, A., and Schwab, C., High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs, Found. Comput. Math., 14 (2014), pp. 601-633. · Zbl 1298.65022
[7] Cohen, A., Devore, R., and Schwab, C., Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs, Anal. Appl., 9 (2011), pp. 11-47. · Zbl 1219.35379
[8] Cohen, A. and DeVore, R., Approximation of high-dimensional parametric PDEs, Acta Numer., 24 (2015), pp. 1-159. · Zbl 1320.65016
[9] Cohen, A., DeVore, R., and Schwab, C., Convergence rates of best n-term Galerkin approximations for a class of elliptic PDEs, Found. Comput. Math., 10 (2010), pp. 615-646. · Zbl 1206.60064
[10] Ern, A. and Guermond, J. L., Theory and Practice of Finite Elements, , Springer, New York, 2004. · Zbl 1059.65103
[11] Ernst, O. G., Sprungk, B., and Tamellini, L., Convergence of sparse collocation for functions of countably many Gaussian random variables (with application to elliptic PDEs), SIAM J. Numer. Anal., 56 (2018), pp. 877-905, doi:10.1137/17M1123079. · Zbl 06864017
[12] Gerstner, T. and Griebel, M., Dimension-adaptive tensor-product quadrature, Computing, 71 (2003), pp. 65-87. · Zbl 1030.65015
[13] Griebel, M. and Harbrecht, H., On the convergence of the combination technique, in Sparse Grids and Applications—Munich 2012, Springer, Cham, 2014, pp. 55-74. · Zbl 1316.65054
[14] Griebel, M., Schneider, M., and Zenger, C., A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1992, pp. 263-281. · Zbl 0785.65101
[15] Griebel, M., and Seidler, U., A dimension-adaptive combination technique for uncertainty quantification, Int. J. Uncertain. Quantif., 14 (2024), pp. 21-43.
[16] Guignard, D. and Nobile, F., A posteriori error estimation for the stochastic collocation finite element method, SIAM J. Numer. Anal., 56 (2018), pp. 3121-3143, doi:10.1137/17M1155454. · Zbl 1402.65159
[17] Guth, P. A., Kaarnioja, V., Kuo, F. Y., Schillings, C., and Sloan, I. H., A quasi-Monte Carlo method for optimal control under uncertainty, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 354-383, doi:10.1137/19M1294952. · Zbl 1475.49004
[18] Haji-Ali, A.-L., Nobile, F., Tamellini, L., and Tempone, R., Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity, Found. Comput. Math., 16 (2016), pp. 1555-1605. · Zbl 1371.65009
[19] Haji-Ali, A.-L., Nobile, F., Tamellini, L., and Tempone, R., Multi-index stochastic collocation for random PDEs, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 95-122. · Zbl 1436.65196
[20] Haji-Ali, A.-L., Nobile, F., and Tempone, R., Multi-index Monte Carlo: When sparsity meets sampling, Numer. Math., 132 (2016), pp. 767-806. · Zbl 1339.65009
[21] Harbrecht, H., Peters, M., and Siebenmorgen, M., On multilevel quadrature for elliptic stochastic partial differential equations, in Sparse Grids and Applications, Springer, 2012, pp. 161-179.
[22] Hinze, M., Pinnau, R., Ulbrich, M., and Ulbrich, S., Optimization with PDE Constraints, , Springer, New York, 2009. · Zbl 1167.49001
[23] Kouri, D. P., An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations with Uncertain Coefficients, Ph.D. thesis, Rice University, Houston TX, 2012.
[24] Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G., A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35 (2013), pp. A1847-A1879, doi:10.1137/120892362. · Zbl 1275.49047
[25] Kouri, D. P. and Ridzal, D., Inexact trust-region methods for PDE-constrained optimization, in Frontiers in PDE-Constrained Optimization, Springer, 2018, pp. 83-121. · Zbl 1419.49038
[26] Kouri, D. P. and Shapiro, A., Optimization of PDEs with uncertain inputs, in Frontiers in PDE-Constrained Optimization, Springer, 2018, pp. 41-81. · Zbl 1473.49030
[27] Kouri, D. P. and Surowiec, T. M., Existence and optimality conditions for risk-averse PDE-constrained optimization, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 787-815, doi:10.1137/16M1086613. · Zbl 1393.49002
[28] Kroese, D. P., Taimre, T., and Botev, Z. I., Handbook of Monte Carlo Methods, , Wiley, 2013.
[29] Kunoth, A. and Schwab, C., Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs, SIAM J. Control Optim., 51 (2013), pp. 2442-2471, doi:10.1137/110847597. · Zbl 1278.49043
[30] Kunoth, A. and Schwab, C., Sparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problems, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1034-1059, doi:10.1137/15M1041390. · Zbl 1398.65252
[31] Lord, G. J., Powell, C. E., and Shardlow, T., An Introduction to Computational Stochastic PDEs, , Cambridge University Press, 2014. · Zbl 1327.60011
[32] Martello, S. and Toth, P., Knapsack Problems: Algorithms and Computer Implementations, John Wiley & Sons, 1990. · Zbl 0708.68002
[33] Martin, M., Krumscheid, S., and Nobile, F., Complexity analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 1599-1633. · Zbl 1492.35394
[34] Martínez-Frutos, J. and Esparza, F. P., Optimal Control of PDEs under Uncertainty: An Introduction with Application to Optimal Shape Design of Structures, Springer, 2018. · Zbl 1426.49001
[35] Nobile, F., Tamellini, L., and Tempone, R., Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: Application to random elliptic PDEs, Numer. Math., 134 (2016), pp. 343-388. · Zbl 1351.41004
[36] Nobile, F. and Vanzan, T., Preconditioners for robust optimal control problems under uncertainty, Numer. Linear Algebra Appl., 30 (2023), e2472, doi:10.1002/nla.2472. · Zbl 07675621
[37] Peherstorfer, B., Willcox, K., and Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60 (2018), pp. 550-591, doi:10.1137/16M1082469. · Zbl 1458.65003
[38] Pflaum, C., Diskretisierung elliptischer Differentialgleichungen mit dünnen Gittern, Ph.D. thesis, Fakultät für Mathematik der Technischen Universität München, 1996. · Zbl 0857.65120
[39] Reichel, L., Newton interpolation at Leja points, BIT, 30 (1990), pp. 332-346. · Zbl 0702.65012
[40] Robbe, P., Nuyens, D., and Vandewalle, S., A multi-index quasi-Monte Carlo algorithm for lognormal diffusion problems, SIAM J. Sci. Comput., 39 (2017), pp. S851-S872, doi:10.1137/16M1082561. · Zbl 1386.60225
[41] Schwab, C. and Gittelson, C. J., Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numer., 20 (2011), pp. 291-467. · Zbl 1269.65010
[42] Shapiro, A., Dentcheva, D., and Ruszczyński, A., Lectures on Stochastic Programming: Modeling and Theory, Third Edition, SIAM, Philadelphia, 2021, doi:10.1137/1.9781611976595. · Zbl 1487.90507
[43] Teckentrup, A., Jantsch, P., Webster, C. G., and Gunzburger, M., A multilevel stochastic collocation method for partial differential equations with random input data, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1046-1074, doi:10.1137/140969002. · Zbl 1327.65014
[44] Trefethen, L. N., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50 (2008), pp. 67-87, doi:10.1137/060659831. · Zbl 1141.65018
[45] Van Barel, A. and Vandewalle, S., Robust optimization of PDEs with random coefficients using a multilevel Monte Carlo method, SIAM/ASA J. Uncertain. Quantif., 7 (2019), pp. 174-202, doi:10.1137/17M1155892. · Zbl 1421.35396
[46] Vanzan, T. and Nobile, F., A combination technique for optimal control problems constrained by random PDEs - numerical tests, Zenodo, 2024, doi:10.5281/zenodo.10932946.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.