×

A quasi-Monte Carlo method for optimal control under uncertainty. (English) Zbl 1475.49004

The authors consider an optimal control problem in the presence of uncertainty: the target function is the solution of an elliptic partial differential equation, steered by a control function and with a random field as input coefficient. They present a specially designed quasi-Monte Carlo method to approximate the expected values with respect to the uncertainty. Their method provides error bounds for the approximation of the stochastic integral, which do not depend on the number of uncertain variables. It results in faster convergence rates compared to Monte Carlo methods in the case of smooth integrands. The nonnegative quadrature weights preserve the convexity structure of the optimal control problem. The random field is, in principle, infinite-dimensional, and in practice, might need a large finite number of terms for accurate approximation. The novelty lies in using and analyzing a specially designed quasi-Monte Carlo method to approximate the possibly high-dimensional integrals with respect to the stochastic variables. The authors present a gradient descent algorithm to solve the optimal control problem for the case without control constraints and a projected variant of the algorithm for the problem with control constraints. Moreover, they present error estimates and convergence rates for the dimension truncation and the finite element discretization together with confirming numerical experiments.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
65D30 Numerical integration
65D32 Numerical quadrature and cubature formulas

Software:

QMC4PDE

References:

[1] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1166-1192. · Zbl 1391.93289
[2] A. A. Ali, E. Ullmann, and M. Hinze, Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 466-492. · Zbl 1371.35371
[3] A. Borzì, V. Schulz, C. Schillings, and G. von Winckel, On the treatment of distributed uncertainties in PDE-constrained optimization, GAMM-Mit., 33 (2010), pp. 230-246. · Zbl 1207.49033
[4] P. Chen and O. Ghattas, Sparse Polynomial Approximations for Affine Parametric Saddle Point Problems, arXiv:1809.10251 [math.NA], 2018.
[5] P. Chen, U. Villa, and O. Ghattas, Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty, J. Comput. Phys., 385 (2019), pp. 163-186. · Zbl 1451.65076
[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[7] A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math., 10 (2010), pp. 615-646. · Zbl 1206.60064
[8] J. Dick, M. Feischl, and C. Schwab, Improved efficiency of a multi-index FEM for computational uncertainty quantification, SIAM J. Numer. Anal., 57 (2019), pp. 1744-1769. · Zbl 07100359
[9] J. Dick, F. Y. Kuo, Q. T. Le Gia, D. Nuyens, and C. Schwab, Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs, SIAM J. Numer. Anal., 52 (2014), pp. 2676-2702. · Zbl 1326.65013
[10] J. Dick, F. Y. Kuo, Q. T. Le Gia, and C. Schwab, Multilevel higher order QMC Petrov-Galerkin discretization for affine parametric operator equations, SIAM J. Numer. Anal., 54 (2016), pp. 2541-2568. · Zbl 1347.65012
[11] R. N. Gantner, Dimension truncation in QMC for affine-parametric operator equations, in Monte Carlo and Quasi-Monte Carlo Methods, A. B. Owen and P. W. Glynn, eds., Stanford, CA, 2018, pp. 249-264. · Zbl 1407.65011
[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, New York, 2001. · Zbl 1042.35002
[13] I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab, and I. H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients, Numer. Math., 131 (2015), pp. 329-368. · Zbl 1341.65003
[14] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), pp. 45-61. · Zbl 1074.65069
[15] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Springer, New York, 2009. · Zbl 1167.49001
[16] V. Kaarnioja, F. Y. Kuo, and I. H. Sloan, Uncertainty quantification using periodic random variables, SIAM J. Numer. Anal., 58 (2020), pp. 1068-1091. · Zbl 07184150
[17] D. P. Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 55-81. · Zbl 1307.49026
[18] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35 (2013), pp. A1847-A1879. · Zbl 1275.49047
[19] D. P. Kouri and A. Shapiro, Optimization of PDEs with uncertain inputs, in Frontiers in PDE-Constrained Optimization, H. Antil, D. P. Kouri, M.-D. Lacasse, and D. Ridzal, eds., Springer, New York, 2018, pp. 41-81. · Zbl 1473.49030
[20] D. P. Kouri and T. M. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk, SIAM J. Optim., 26 (2016), pp. 365-396. · Zbl 1337.49049
[21] D. P. Kouri and T. M. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 787-815. · Zbl 1393.49002
[22] A. Kunoth and C. Schwab, Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs, SIAM J. Control Optim., 51 (2013), pp. 2442-2471. · Zbl 1278.49043
[23] A. Kunoth and C. Schwab, Sparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problems, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1034-1059. · Zbl 1398.65252
[24] F. Y. Kuo and D. Nuyens, Qmc4pde (8 August 2019), https://people.cs.kuleuven.be/ dirk.nuyens/qmc4pde/.
[25] F. Y. Kuo and D. Nuyens, Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: A survey of analysis and implementation, Found. Comput. Math., 16 (2016), pp. 1631-1696. · Zbl 1362.65015
[26] F. Y. Kuo and D. Nuyens, Application of quasi-Monte Carlo methods to PDEs with random coefficients – an overview and tutorial, in Monte Carlo and Quasi-Monte Carlo Methods, A. B. Owen and P. W. Glynn, eds., Stanford, CA, 2018, pp. 53-71. · Zbl 1407.60093
[27] F. Y. Kuo, R. Scheichl, C. Schwab, I. H. Sloan, and E. Ullmann, Multilevel quasi-Monte Carlo methods for lognormal diffusion problems, Math. Comp., 86 (2017), pp. 2827-2860. · Zbl 1368.65005
[28] F. Y. Kuo, C. Schwab, and I. H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal., 50 (2012), pp. 3351-3374. · Zbl 1271.65017
[29] F. Y. Kuo, C. Schwab, and I. H. Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients, Found. Comput. Math., 15 (2015), pp. 411-449. · Zbl 1318.65006
[30] C. Schwab, QMC Galerkin discretization of parametric operator equations, in Monte Carlo and Quasi-Monte Carlo Methods, J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds., Springer, New York, 2013, pp. 613-629. · Zbl 1302.65020
[31] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer Ser. Sov. Math., Springer, New York, 1987. · Zbl 0616.47040
[32] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, 1st ed., American Mathematical Society, Providence, RI, 2010. · Zbl 1195.49001
[33] A. Van Barel and S. Vandewalle, Robust optimization of PDEs with random coefficients using a multilevel Monte Carlo method, SIAM/ASA J. Uncertain. Quantif., 7 (2019), pp. 174-202. · Zbl 1421.35396
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.