×

Octonionic monogenic and slice monogenic Hardy and Bergman spaces. (English) Zbl 07896912

Summary: In this paper we discuss some basic properties of octonionic Bergman and Hardy spaces. In the first part we review some fundamental concepts of the general theory of octonionic Hardy and Bergman spaces together with related reproducing kernel functions in the monogenic setting. We explain how some of the fundamental problems in well-defining a reproducing kernel can be overcome in the non-associative setting by looking at the real part of an appropriately defined para-linear octonion-valued inner product. The presence of a weight factor of norm 1 in the definition of the inner product is an intrinsic new ingredient in the octonionic setting. Then we look at the slice monogenic octonionic setting using the classical complex book structure. We present explicit formulas for the slice monogenic reproducing kernels for the unit ball, the right octonionic half-space and strip domains bounded in the real direction. In the setting of the unit ball we present an explicit sequential characterization which can be obtained by applying the special Taylor series representation of the slice monogenic setting together with particular octonionic calculation rules that reflect the property of octonionic para-linearity.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
17D05 Alternative rings

References:

[1] D. Alpay, F. Colombo and I. Sabadini, Slice Hyperholomorphic Schur Analysis, Oper. Theory Adv. Appl. 256, Birkhäuser/Springer, Cham, 2017.
[2] J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N. S.) 39 (2002), no. 2, 145-205. · Zbl 1026.17001
[3] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Res. Notes in Math. 76, Pitman, Boston, 1982. · Zbl 0529.30001
[4] F. Colombo, R. S. Kraußhar and I. Sabadini, On Bergman and Hardy spaces in the octonionic setting, preprint.
[5] F. Colombo, I. Sabadini and D. C. Struppa, Dirac equation in the octonionic algebra, Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis (Philadelphia 1998), Contemp. Math. 251, American Mathematical Society, Providence (2000), 117-134. · Zbl 0966.15021
[6] F. Colombo, I. Sabadini and D. C. Struppa, Michele Sce’s Works in Hypercomplex Analysis—A Translation with Commentaries, Birkhäuser/Springer, Cham, 2020. · Zbl 1448.30001
[7] D. Constales and R. S. Kraußhar, Octonionic Kerzman-Stein operators, Complex Anal. Oper. Theory 15 (2021), no. 6, Paper No. 104. · Zbl 1498.30026
[8] D. Constales and R. S. Kraußhar, Szegő and polymonogenic Bergman kernels for half-space and strip domains, and single-periodic functions in Clifford analysis, Complex Var. Theory Appl. 47 (2002), no. 4, 349-360. · Zbl 1052.32006
[9] P. Dentoni and M. Sce, Funzioni regolari nell’algebra di Cayley, Rend. Semin. Mat. Univ. Padova 50 (1973), 251-267. · Zbl 0283.30039
[10] C. Dieckmann, Jacobiformen über den Cayley-Zahlen, Ph.D. Thesis, Lehrstuhl A für Mathematik, RWTH Aachen University, 2014.
[11] X. Dou, G. Ren, I. Sabadini and T. Yang, Weak slice regular functions on the n-dimensional quadratic cone of octonions, J. Geom. Anal. 31 (2021), no. 11, 11312-11337. · Zbl 1482.30119
[12] G. Gentili and D. C. Struppa, Regular functions on the space of Cayley numbers, Rocky Mountain J. Math. 40 (2010), no. 1, 225-241. · Zbl 1193.30070
[13] R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662-1691. · Zbl 1217.30044
[14] R. Ghiloni, A. Perotti and V. Recupero, Noncommutative Cauchy integral formula, Complex Anal. Oper. Theory 11 (2017), no. 2, 289-306. · Zbl 1364.30057
[15] H. H. Goldstine and L. P. Horwitz, Hilbert space with non-associative scalars. I, Math. Ann. 154 (1964), 1-27. · Zbl 0117.08404
[16] Q. Huo and G. Ren, Para-linearity as the nonassociative counterpart of linearity, J. Geom. Anal. 32 (2022), no. 12, Paper No. 304. · Zbl 1518.46050
[17] Q. Huo and G. Ren, Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley-Dickson algebras, J. Math. Phys. 63 (2022), no. 4, Paper No. 042101. · Zbl 1507.17008
[18] J. Kauhanen and H. Orelma, Cauchy-Riemann operators in octonionic analysis, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, Paper No. 1. · Zbl 1394.30035
[19] J. Kauhanen and H. Orelma, On the structure of octonion regular functions, Adv. Appl. Clifford Algebr. 29 (2019), no. 4, Paper No. 77. · Zbl 1427.30079
[20] R. S. Kraußhar, Differential topological aspects in octonionic monogenic function theory, Adv. Appl. Clifford Algebr. 30 (2020), Paper No. 51. · Zbl 1455.30041
[21] R. S. Kraußhar, Recent and new results on octonionic Bergman and Szegő kernels, Math. Methods Appl. Sci. (2021), 10.1002/mma.7316. · Zbl 07869448 · doi:10.1002/mma.7316
[22] X. Li and L. Peng, On Stein-Weiss conjugate harmonic function and octonion analytic function, Approx. Theory Appl. (N. S.) 16 (2000), no. 2, 28-36. · Zbl 0976.31008
[23] X. Li and L. Peng, The Cauchy integral formulas on the octonions, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 1, 47-64. · Zbl 1068.30037
[24] X. Li, K. Zhao and L. Peng, The Laurent series on the octonions, Adv. Appl. Clifford Algebras 11 (2001), no. S2, 205-217. · Zbl 1221.30112
[25] X.-M. Li, Z. Kai and L.-Z. Peng, Characterization of octonionic analytic functions, Complex Var. Theory Appl. 50 (2005), no. 13, 1031-1040. · Zbl 1087.30046
[26] X. M. Li, L. Z. Peng and T. Qian, Cauchy integrals on Lipschitz surfaces in octonionic space, J. Math. Anal. Appl. 343 (2008), no. 2, 763-777. · Zbl 1151.30038
[27] S. V. Ludkovsky and W. Sprössig, Spectral representations of operators in Hilbert spaces over quaternions and octonions, Complex Var. Elliptic Equ. 57 (2012), no. 12, 1301-1324. · Zbl 1322.47029
[28] K. Nôno, On the octonionic linearization of Laplacian and octonionic function theory, Bull. Fukuoka Univ. Ed. III 37 (1988), 1-15. · Zbl 0676.30029
[29] B. R. Prather, Octonions - Hilbert spaces, fibrations and analysis, Ph.D. Thesis, Florida State University, 2021.
[30] G. Ren and T. Yang, Slice regular functions of several octonionic variables, Math. Methods Appl. Sci. 43 (2020), no. 9, 6031-6042. · Zbl 1451.30095
[31] J. Wang and X. Li, The octonionic Bergman kernel for the unit ball, Adv. Appl. Clifford Algebr. 28 (2018), no. 3, Paper No. 60. · Zbl 1400.30055
[32] J. Wang and X. Li, The octonionic Bergman kernel for the half space, Adv. Appl. Clifford Algebr. 30 (2020), no. 4, Paper No. 57. · Zbl 1451.30099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.