×

Differential topological aspects in octonionic monogenic function theory. (English) Zbl 1455.30041

Let \(\mathbb{O}\) denote the real algebra of octonions, or Cayley numbers, \[x=x_0+\sum_{t=1}^7x_te_t,\] with \(x_t \in \mathbb{R}\) for all \(t \in \{0,\ldots,7\}\). The article studies {left (or right) octonionic monogenic} functions: namely, solutions of \(\mathcal{D}f=0\) (or \(f\mathcal{D}=0\)), where \[\mathcal{D}:=\frac{\partial}{\partial x_0}+\sum_{t=1}^7e_t\frac{\partial}{\partial x_t}\] is the octonionic Cauchy-Riemann operator. This notion, attributed to [K. Imaeda and M. Imaeda, Appl. Math. Comput. 115, No. 2–3, 77–88 (2000; Zbl 1032.17003); X. Li and L. Peng, Approximation Theory Appl. 16, No. 2, 28–36 (2000; Zbl 0976.31008)], is distinct from the notion of octonionic regularity of G. Gentili and D. C. Struppa [Rocky Mt. J. Math. 40, No. 1, 225–241 (2010; Zbl 1193.30070)].
The author recalls several properties of octonionic monogenic functions known in literature and provides a proof of their Identity Principle. For each octonionic monogenic function \(f\) and each value \(a\) of \(f\), he defines and studies the {order} of \(f\) at an isolated point of the preimage \(f^{-1}(a)\). For the case when all points considered are isolated, he proves an Argument Principle and a version of Rouché’s Theorem (whence a version of Hurwitz’s Theorem). The final part of the article sets the framework to address the case of non-isolated points of the preimage \(f^{-1}(0)\) and generalizes the octonionic Argument Principle within this framework. The study of other properties within the same framework is left as an open problem.

MSC:

30G35 Functions of hypercomplex variables and generalized variables

References:

[1] Alexandroff, P.; Hopf, P., Topologie I (1935), Bronx: Chelsea, Bronx
[2] Baez, J., The octonions, Bull. Am. Math. Soc., 39, 145-205 (2002) · Zbl 1026.17001 · doi:10.1090/S0273-0979-01-00934-X
[3] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Pitman Res. Notes in Math., 76, (1982) · Zbl 0529.30001
[4] Burdik, C.; Catto, S.; Gürcan, Y.; Khalfan, A.; Kurt, L.; La Kato, V., \(SO(9,1)\) Group and examples of analytic functions, J. Phys. Conf. Ser., 1194, 012016 (2019) · doi:10.1088/1742-6596/1194/1/012016
[5] Colombo, F.; Sabadini, I.; Struppa, D., Entire Slice Regular Functions (2016), Cham: Springer, Cham · Zbl 1372.30001
[6] Dieckmann, C.: Jacobiformen über den Cayley-Zahlen, PhD thesis, Lehrstuhl A für Mathematik (2014). https://publications.rwth-aachen.de/record/445009/files/5202.pdf
[7] Dray, T.; Manogue, C., The Geometry of the Octonions, 228 (2015), Singapore: World Scientific, Singapore · Zbl 1333.17004
[8] Fueter, R.: Functions of a Hypercomplex Variable. Lecture Notes written and supplemented by E. Bareiss, ETH Zürich, Wintersemester 1948/49
[9] Ghiloni, R.; Perotti, A., Zeros of regular functions of quaternionic and octonionic variable: a division lemma and the Camshaft effect, Ann. Mate. Pura Appl., 190, 539-551 (2011) · Zbl 1246.30013 · doi:10.1007/s10231-010-0162-1
[10] Ghiloni, R.; Perotti, A., Slice regular functions on real alternative algebras, Adv. Math., 226, 1662-1691 (2011) · Zbl 1217.30044 · doi:10.1016/j.aim.2010.08.015
[11] Gogberashvili, M., Octonionic geometry and conformal transformations, Int. J. Geom. Methods Mod. Phys., 13, 7, 1650092 (2016) · Zbl 1343.53024 · doi:10.1142/S0219887816500924
[12] Gürlebeck, K.; Habetha, K.; Sprößig, W., Holomorphic Functions in the Plane and \(n\)-Dimensional Space (2008), Basel: Birkhäuser, Basel · Zbl 1132.30001
[13] Gürsey, F.; Tze, H., On the Role of Division and Jordan Algebras in Particle Physics (1996), Singapore: World Scientific, Singapore · Zbl 0956.81502
[14] Hempfling, T., Some remarks on zeroes of monogenic functions, Adv. Appl. Clifford Algebras, 11, S2, 107-116 (2001) · Zbl 1221.30108 · doi:10.1007/BF03219126
[15] Hempfling, T.; Kraußhar, RS, Order theory of isolated points of monogenic functions, Arch. Math., 80, 406-423 (2003) · Zbl 1043.30031 · doi:10.1007/s00013-003-0091-y
[16] Imaeda, K., Sedenions: algebra and analysis, Appl. Math. Comput., 115, 77-88 (2000) · Zbl 1032.17003
[17] Jin, Ming, Ren, Guangbin, Sabadini, I.: Slice Dirac operator over octonions. To appear in Israel J. Math., arXiv:1908.01383 · Zbl 1435.30142
[18] Kauhanen, J.; Orelma, H., Cauchy-Riemann operators in octonionic analysis, Adv. Appl. Clifford Algebras, 28, 1, 14 (2018) · Zbl 1394.30035 · doi:10.1007/s00006-018-0826-2
[19] Kauhanen, J.; Orelma, H., On the structure of octonion regular functions, Adv. Appl. Clifford Algebras, 29, 4, 17 (2019) · Zbl 1427.30079 · doi:10.1007/s00006-019-0983-y
[20] Kraußhar, RS, Generalized Automorphic Forms in Hypercomplex Spaces (2004), Basel: Birkhäuser, Basel · Zbl 1058.30046
[21] Kraußhar, R.S.: Function Theories in Cayley-Dickson Algebras and Number Theory, submitted for publication (2019), p 19. arXiv:1912.01351
[22] KrauSShar, R.S.: Conformal Mappings Revisited in the Octonions and Clifford Algebras of Arbitrary dimension. Adv. Appl. Clifford Algebras 30, Article number 36 (2020). arXiv:1912.09109 · Zbl 1441.30075
[23] Ludkovski, SV, Differentiable functions of Cayley-Dickson numbers and line integration, J. Math. Sci., 141, 3, 1231-1298 (2007) · Zbl 1183.30054 · doi:10.1007/s10958-007-0042-4
[24] Li, X.; Peng, L-Z, On Stein-Weiss conjugate harmonic function and octonion analytic function, Approx. Theory Appl., 16, 28-36 (2000) · Zbl 0976.31008
[25] Li, X.; Kai, Z.; Peng, L-Z, The Laurent series on the octonions, Adv. Appl. Clifford Algebras, 11, S2, 205-217 (2001) · Zbl 1221.30112 · doi:10.1007/BF03219132
[26] Li, X.; Peng, L-Z, The Cauchy integral formulas on the octonions, Bull. Belg. Math. Soc., 9, 47-62 (2002) · Zbl 1068.30037 · doi:10.36045/bbms/1102715140
[27] Li, X.; Kai, Z.; Peng, L-Z, Characterization of octonionic analytic functions, Complex Variables, 50, 13, 1031-1040 (2005) · Zbl 1087.30046
[28] Nolder, C.: Much to do about octonions. AIP Proceedings, ICNAAM 2018, 2116, 160007 (2019). 10.1063/1.5114151
[29] Nono, K., On the octonionic linearization of Laplacian and octonionic function theory, Bull. Fukuoka Univ. Ed. Part, III, 37, 1-15 (1988) · Zbl 0676.30029
[30] Smith, W.D.: Quaternions, octonions, 16-ons and \(2^n\)-ons; New kinds of numbers. Pennsylvania State University 1-68, (2004). DOI: 10.1.1.672.2288
[31] Zöll, G.: Ein Residuenkalkül in der Clifford-analysis und die Möbius Transformationen für euklidisce Räume. PhD thesis, Lehrstuhl II für Mathematik, RWTH Aachen, (1987) · Zbl 0659.30043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.