×

A polynomial system of degree four with an invariant square containing at least five limit cycles. (English) Zbl 07896483

Summary: We consider a class of polynomial systems of degree four with four real invariant straight lines that form a square, called this an invariant square, and also that contains in its interior at least five small amplitude limit cycles for a certain choice of the parameters. Moreover, we will obtain the necessary and sufficient conditions for the critical point inside the square to be a center.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations

References:

[1] Artés, J.; Grünbaum, B.; Llibre, J., On the number of invariant straight lines for polynomial differential systems, Pacific J. Math., 184, 317-327, 1998 · Zbl 0930.34022 · doi:10.2140/pjm.1998.184.207
[2] Xikang, Z., Number of integral lines of polynomial systems of degree three and four, J. Nanying Univ. Math. Biquart., 10, 209-212, 1993
[3] Sokulski, J., On the number of invariant lines of polynomial fields, Nonlinearity, 9, 479-485, 1996 · Zbl 0888.34019 · doi:10.1088/0951-7715/9/2/011
[4] Li, M.; Han, M., On the number of limit cycles of a quartic polynomial system, Discrete Contin. Dyn. Syst. Ser. S, 14, 3167-3181, 2021 · Zbl 1485.34101
[5] Kooij, R.: Limit cycles in polynomial systems, thesis. University of Technology, Delft (1993)
[6] Liu, ZH; Sáez, E.; Szántó, I., A system of degree four with an invariant triangle and at least three small amplitude limit cycles, Electron. J. Qual. Theory Differ. Equ., 69, 1-7, 2010 · Zbl 1292.34033
[7] Szántó, I., A polynomial system of degree four with an invariant triangle containing at least four small amplitude limit cycles, Miskolc Math. Notes, 25, 489-492, 2024 · Zbl 07911232 · doi:10.18514/MMN.2024.4477
[8] Sáez, E.; Stange, E.; Szántó, I., Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four, Czechoslovak Math. J., 57, 132, 105-114, 2007 · Zbl 1168.92319 · doi:10.1007/s10587-007-0047-7
[9] Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles, J. Math. Pures Appl. (3) 7 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 3-84 (1951)
[10] A System for Doing Mathematics by Computer, 1988, IL: Champaign, IL · Zbl 0671.65002
[11] Marsden, JE; McCracken, M., The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 1976, New York: Springer-Verlag, New York · Zbl 0346.58007 · doi:10.1007/978-1-4612-6374-6
[12] Yanqian, Y., Cubic Kolmogorov system having three straight line integrals forming a triangle, Ann. Diff. Eqs., 6, 3, 365-372, 1990 · Zbl 0728.34029
[13] Li, X.; Yang, H.; Wang, B., Limit cycles and invariant curves in a class of switching systems with degree four, J. Funct. Spaces., 2018 · Zbl 1425.34048 · doi:10.1155/2018/4716047
[14] Liu, ZH; Sáez, E.; Szántó, I., A cubic system with an invariant triangle surrounding at least one limit cycle, Taiwan. J. Math., 7, 2, 275-281, 2003 · Zbl 1051.34025 · doi:10.11650/twjm/1500575064
[15] Llibre, J.; Rodrígues, A., Periodic orbits for real planar polynomial vector fields of degree \(n\) having \(n\) invariant straight lines taking into account their multiplicities, Electron. J. Qual. Theory Differ. Equ. Paper, 2015, 55, 1-15, 2015 · Zbl 1349.34142
[16] Bautin, NN, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 100, 1-19, 1954 · Zbl 0059.08201
[17] Gasull, A.; Giné, J., Cyclicity versus Center Problem, Qual. Theory Dyn. Syst., 9, 101-113, 2010 · Zbl 1210.34049 · doi:10.1007/s12346-010-0022-9
[18] Chavarriga, J.; Giacomini, H.; Giné, J.; Llibre, J., On the integrability of two-dimensional flows, J. Differ. Equ., 157, 163-182, 1999 · Zbl 0940.37005 · doi:10.1006/jdeq.1998.3621
[19] Krantz, SG; Parks, HR, The Implicit Function Theorem. History, Theory, and Applications, 2013, New York: Springer, New York · Zbl 1269.58003 · doi:10.1007/978-1-4614-5981-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.