×

A study on Milne-type inequalities for a specific fractional integral operator with applications. (English) Zbl 07895575

Summary: Fractional integral operators have been studied extensively in the last few decades by various mathematicians, because it plays a vital role in the developments of new inequalities. The main goal of the current study is to establish some new Milne-type inequalities by using the special type of fractional integral operator i.e Caputo Fabrizio operator. Additionally, generalization of these developed Milne-type inequalities for \(s\)-convex function are also given. Furthermore, applications to some special means, quadrature formula, and \(q\)-digamma functions are presented.

MSC:

26D07 Inequalities involving other types of functions
26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals
Full Text: DOI

References:

[1] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231. · Zbl 1509.26005
[2] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002) 803-806.
[3] M. A. El-Shaed, Fractional calculus model of the semilunar heart valve vibrations, International design engineering technical conferences and computers and information in engineering confer-ence., (2003).
[4] M. W. Alomari, A companion of the generalized trapezoid inequality and applications, J. Math. Appl., 36 (2013) 5-15. · Zbl 1382.26019
[5] S. S. Dragomir, On trapezoid quadrature formula and applications, Kragujev. J. Math., 23 (2001), 25-36. · Zbl 1005.26017
[6] M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applica-tions, Math. Comput. Model., 54 (2011), 2175-2182. · Zbl 1235.26015
[7] M. Z. Sarikaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differen-tiable mappings via fractional integrals, Facta Univ., Ser. Math. Inform. 29 (4) (2014), 371-384. · Zbl 1458.26069
[8] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (5) (2004), 137-146. · Zbl 1034.26019
[9] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujev. J. Math., 22, 13 (2000) 19. · Zbl 1012.26016
[10] M. Z. Sarikaya, A. Saglam, H. Yaldiz, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. open probl. comput. sci. math. 5 (3) (2012).
[11] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson’s inequality and applications, J. inequal. appl. 5 (2000), 533-579. · Zbl 0976.26012
[12] M. Z. Sarikaya, E. Set, M. E. O ̈zdemir, On new inequalities of Simpson’s type for s-convex functions, Comput. math. appl. 60 (8) (2000), 2191-2199. · Zbl 1205.65132
[13] T. Du, Y. Li, Z. Yang, A generalization of Simpson’s inequality via differentiable mapping using extended (s, m)-convex functions, Appl. math. comput. 293 (2017), 358-369. · Zbl 1411.26020
[14] S. S. Dragomir, On Simpson’s quadrature formula for mappings of bounded variation and appli-cations, Tamkang J. math., 30 (1) (1999), 53-58. · Zbl 0989.26019
[15] H. Yang, S. Qaisar, A. Munir, and M. Naeem, New inequalities via Caputo-Fabrizio integral operator with applications, Aims Mathe, 8 (8) (2023), 19391-19412.
[16] N. A. Alqahtani., S. Qaisar, A. Munir, M. Naeem, & H. Budak, Error bounds for fractional integral inequalities with applications, Fractal and Fractional 8 (4), 208, (2024).
[17] M. U. D. Junjua, A. Qayyum, A. Munir, H. Budak, M. M. Saleem, & S. S. A. Supadi, A study of some new Hermite-Hadamard inequalities via specific convex functions with applications, Mathematics 12 (3) (2024), 478.
[18] S. K. Paul, L. N. Mishra, V. N. Mishra., & D. Baleanu, Analysis of mixed type nonlinear Volterra-Fredholm integral equations involving the Erd ́elyi-Kober fractional operator, Journal of king saud university-science 35 (10), (2023), 102949.
[19] V. K. Pathak, & L. N. Mishra, On solvbility and approximatting the soultions for nonlinear infinite system of frational functions integral equations in sequence space lp, p > 1, Journal of integral equations and applications 35 (4) (2023), 443-458. · Zbl 1543.45004
[20] S. K. Paul, & L. N. Mishra, Stability analysis through the Bielecki metric to nonlinear fractional integral equations of n-product operators, Aims Mathe. 9 (4) (2024), 7770-7790.
[21] V. K. Pathak, & L. N. Mishra, & V. N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erd ́elyi-Kober fractional operator, Mathematical methods in the applied sciences 46 (13) (2023), 14340-14352. · Zbl 1530.45007
[22] S. K. Paul, & L. N. Mishra, & D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Mathematics 8 (2023).
[23] M. Raiz, R.S. Rajawat, L. N. Mishra, , V. N. Mishra, Approximation on bivariate of Durrmeyer operators based on beta function, The Journal of Analysis. (2023).
[24] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of simpson’s type for s-convex functions, Comput. math. appl.,60 (2010), 2191-2199. · Zbl 1205.65132
[25] A. D. Booth. Numerical Methods, 3rd edn. Butterworths, California (1966). · Zbl 0146.13203
[26] J. L. W. V. Jensen. Surles fonctions convexes et les inegalites entre les valeurs moyennes, Acta math. 30 (1905), 175-193. · JFM 37.0422.02
[27] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111. · Zbl 0823.26004
[28] S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993). · Zbl 0789.26002
[29] H. Budak, P. K ̈osem, H. Kara, On new Milne-type inequalities for fractional integrals, J inequal appl., 10(2023). · Zbl 1532.26008
[30] M. Caputo, & M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in fractional differentiation & applications.1 (2) (2015), 73-85.
[31] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge unversity press, (1955).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.