×

On solvability and approximating the solutions for nonlinear infinite system of fractional functional integral equations in the sequence space \(\ell_p\), \(p > 1\). (English) Zbl 1543.45004

The following infinite system of nonlinear functional integral equations with Riemann-Liouville type fractional operators in the sequence space \(l_p\), \(p>1\), is considered: \[ x_n(\sigma)=f_n\left(\sigma,x(\sigma),\frac{h_n(\sigma,x(\sigma))}{\Gamma(\alpha)}\int\limits_{0}^{\sigma}\frac{g_n(\sigma,s,x(s))}{(\sigma-s)^{1-\alpha}}ds\right),\] with \( x(\sigma)=(x_j(\sigma))_{j=1}^{\infty}, \; j,n\in\mathbb{N}. \) The authors verify and prove the existence of a solution of this generalized system. The result is established by the applications of the Meir-Keeler condensing operator and Hausdorff measure of noncompactness in the sequence space. An iterative numerical algorithm based on the homotopy perturbation approach along with the Adomian decomposition method to find the approximate solution is also suggested. A numerical example is provided.

MSC:

45G15 Systems of nonlinear integral equations
45L05 Theoretical approximation of solutions to integral equations
65R20 Numerical methods for integral equations
47N20 Applications of operator theory to differential and integral equations
46B45 Banach sequence spaces
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
26A33 Fractional derivatives and integrals

References:

[1] R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed point theory and applications, Cambridge Tracts in Mathematics 141, Cambridge University Press, Cambridge, 2001. Digital Object Identifier: 10.1017/CBO9780511543005 Google Scholar: Lookup Link · doi:10.1017/CBO9780511543005
[2] A. Aghajani and N. Sabzali, “Existence of coupled fixed points via measure of noncompactness and applications”, J. Nonlinear Convex Anal. 15:5 (2014), 941-952. · Zbl 1418.47003
[3] A. Aghajani, J. Banaś, and N. Sabzali, “Some generalizations of Darbo fixed point theorem and applications”, Bull. Belg. Math. Soc. Simon Stevin 20:2 (2013), 345-358. · Zbl 1290.47053
[4] A. Aghajani, R. Allahyari, and M. Mursaleen, “A generalization of Darbo’s theorem with application to the solvability of systems of integral equations”, J. Comput. Appl. Math. 260 (2014), 68-77. Digital Object Identifier: 10.1016/j.cam.2013.09.039 Google Scholar: Lookup Link · Zbl 1293.47048 · doi:10.1016/j.cam.2013.09.039
[5] A. Aghajani, M. Mursaleen, and A. Shole Haghighi, “Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness”, Acta Math. Sci. Ser. B 35:3 (2015), 552-566. Digital Object Identifier: 10.1016/S0252-9602(15)30003-5 Google Scholar: Lookup Link · Zbl 1340.47103 · doi:10.1016/S0252-9602(15)30003-5
[6] R. Arab, “Some fixed point theorems in generalized Darbo fixed point theorem and the existence of solutions for system of integral equations”, J. Korean Math. Soc. 52:1 (2015), 125-139. Digital Object Identifier: 10.4134/JKMS.2015.52.1.125 Google Scholar: Lookup Link · Zbl 1305.47038 · doi:10.4134/JKMS.2015.52.1.125
[7] R. Arab, R. Allahyari, and A. Shole Haghighi, “Construction of a measure of noncompactness on \[BC(\Omega)\] and its application to Volterra integral equations”, Mediterr. J. Math. 13:3 (2016), 1197-1210. Digital Object Identifier: 10.1007/s00009-015-0547-x Google Scholar: Lookup Link · Zbl 1448.47063 · doi:10.1007/s00009-015-0547-x
[8] J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes Pure Appl. Math. 60, CRC Press, Boca Raton, FL, 1980. · Zbl 0441.47056
[9] J. Banaś and M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer, New Delhi, 2014. Digital Object Identifier: 10.1007/978-81-322-1886-9 Google Scholar: Lookup Link · Zbl 1323.47001 · doi:10.1007/978-81-322-1886-9
[10] J. Banaś, D. O’Regan, and K. Sadarangani, “On solutions of a quadratic Hammerstein integral equation on an unbounded interval”, Dynam. Systems Appl. 18:2 (2009), 251-264. · Zbl 1181.45013
[11] I. A. Bhat and L. N. Mishra, “Numerical solutions of Volterra integral equations of third kind and its convergence analysis”, Symmetry 14:12 (2022), art. id. 2600. Digital Object Identifier: 10.3390/sym14122600 Google Scholar: Lookup Link · doi:10.3390/sym14122600
[12] G. Darbo, “Punti uniti in trasformazioni a codominio non compatto”, Rend. Semin. Mat. Univ. Padova 24 (1955), 84-92. · Zbl 0064.35704
[13] M. Ghasemi, M. Tavassoli Kajani, and E. Babolian, “Application of He’s homotopy perturbation method to nonlinear integro-differential equations”, Appl. Math. Comput. 188:1 (2007), 538-548. Digital Object Identifier: 10.1016/j.amc.2006.10.016 Google Scholar: Lookup Link · Zbl 1118.65394 · doi:10.1016/j.amc.2006.10.016
[14] B. Hazarika, H. M. Srivastava, R. Arab, and M. Rabbani, “Existence of solution for an infinite system of nonlinear integral equations via measure of noncompactness and homotopy perturbation method to solve it”, J. Comput. Appl. Math. 343 (2018), 341-352. Digital Object Identifier: 10.1016/j.cam.2018.05.011 Google Scholar: Lookup Link · Zbl 1390.34033 · doi:10.1016/j.cam.2018.05.011
[15] B. Hazarika, H. M. Srivastava, R. Arab, and M. Rabbani, “Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution”, Appl. Math. Comput. 360 (2019), 131-146. Digital Object Identifier: 10.1016/j.amc.2019.04.058 Google Scholar: Lookup Link · Zbl 1428.45003 · doi:10.1016/j.amc.2019.04.058
[16] J.-H. He, “Homotopy perturbation technique”, Comput. Methods Appl. Mech. Engrg. 178:3-4 (1999), 257-262. Digital Object Identifier: 10.1016/S0045-7825(99)00018-3 Google Scholar: Lookup Link · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[17] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems”, Internat. J. Non-Linear Mech. 35:1 (2000), 37-43. Digital Object Identifier: 10.1016/S0020-7462(98)00085-7 Google Scholar: Lookup Link · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[18] J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities”, Appl. Math. Comput. 151:1 (2004), 287-292. Digital Object Identifier: 10.1016/S0096-3003(03)00341-2 Google Scholar: Lookup Link · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[19] J.-H. He, “Application of homotopy perturbation method to nonlinear wave equations”, Chaos Solitons Fractals 26:3 (2005), 695-700. Digital Object Identifier: 10.1016/j.chaos.2005.03.006 Google Scholar: Lookup Link · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[20] S. Hu, M. Khavanin, and W. Zhuang, “Integral equations arising in the kinetic theory of gases”, Appl. Anal. 34:3-4 (1989), 261-266. Digital Object Identifier: 10.1080/00036818908839899 Google Scholar: Lookup Link · Zbl 0697.45004 · doi:10.1080/00036818908839899
[21] D. A. Kay, M. Sagheer, and Q. Tang, “Mathematical analysis of an integral equation arising from population dynamics”, Math. Biosci. 210:2 (2007), 415-435. Digital Object Identifier: 10.1016/j.mbs.2007.05.013 Google Scholar: Lookup Link · Zbl 1134.92029 · doi:10.1016/j.mbs.2007.05.013
[22] C. Kuratowski, “Sur les espaces complets”, Fundam. Math. 15 (1930), 301-309. Digital Object Identifier: 10.4064/fm-15-1-301-309 Google Scholar: Lookup Link · JFM 56.1124.04 · doi:10.4064/fm-15-1-301-309
[23] A. Meir and E. Keeler, “A theorem on contraction mappings”, J. Math. Anal. Appl. 28 (1969), 326-329. Digital Object Identifier: 10.1016/0022-247X(69)90031-6 Google Scholar: Lookup Link · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6
[24] L. N. Mishra and R. P. Agarwal, “On existence theorems for some nonlinear functional-integral equations”, Dynam. Systems Appl. 25:3 (2016), 303-319. · Zbl 1415.45003
[25] L. N. Mishra and M. Sen, “On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order”, Appl. Math. Comput. 285 (2016), 174-183. Digital Object Identifier: 10.1016/j.amc.2016.03.002 Google Scholar: Lookup Link · Zbl 1410.45008 · doi:10.1016/j.amc.2016.03.002
[26] L. N. Mishra, R. P. Agarwal, and M. Sen, “Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval”, Prog. Fract. Differ. Appl. 2:3 (2016), 153-168. Digital Object Identifier: 10.18576/pfda/020301 Google Scholar: Lookup Link · doi:10.18576/pfda/020301
[27] L. N. Mishra, H. M. Srivastava, and M. Sen, “Existence results for some nonlinear functional-integral equations in Banach algebra with applications”, Int. J. Anal. Appl. 11:1 (2016), 1-10. · Zbl 1379.45005
[28] L. N. Mishra, V. K. Pathak, and D. Baleanu, “Approximation of solutions for nonlinear functional integral equations”, AIMS Math. 7:9 (2022), 17486-17506. Digital Object Identifier: 10.3934/math.2022964 Google Scholar: Lookup Link · doi:10.3934/math.2022964
[29] L. Narayan Mishra, M. Sen, and R. N. Mohapatra, “On existence theorems for some generalized nonlinear functional-integral equations with applications”, Filomat 31:7 (2017), 2081-2091. Digital Object Identifier: 10.2298/FIL1707081N Google Scholar: Lookup Link · Zbl 1488.45056 · doi:10.2298/FIL1707081N
[30] V. K. Pathak and L. N. Mishra, “Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations”, Mathematics 10:14 (2022), art. id. 2400. Digital Object Identifier: 10.3390/math10142400 Google Scholar: Lookup Link · doi:10.3390/math10142400
[31] V. K. Pathak and L. N. Mishra, “Existence of solution of Erdélyi-Kober fractional integral equations using measure of non-compactness”, Discontinuity, Nonlinearity, Complex. 12:3 (2023), 701-714. Digital Object Identifier: 10.5890/DNC.2023.09.015 Google Scholar: Lookup Link · doi:10.5890/DNC.2023.09.015
[32] V. K. Pathak, L. N. Mishra, V. N. Mishra, and D. Baleanu, “On the solvability of mixed-type fractional-order non-linear functional integral equations in the Banach space \[C(I)\]”, Fractal Fract. 6:12 (2022), art. id. 744. Digital Object Identifier: 10.3390/fractalfract6120744 Google Scholar: Lookup Link · doi:10.3390/fractalfract6120744
[33] V. K. Pathak, L. N. Mishra, and V. N. Mishra, “On the solvability of a class of nonlinear functional integral equations involving Erdélyi-Kober fractional operator”, Math. Methods Appl. Sci. 46:13 (2023), 14340-14352. Digital Object Identifier: 10.1002/mma.9322 Google Scholar: Lookup Link · Zbl 1530.45007 · doi:10.1002/mma.9322
[34] S. K. Paul, L. N. Mishra, V. N. Mishra, and D. Baleanu, “An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator”, AIMS Math. 8:8 (2023), 17448-17469. Digital Object Identifier: 10.3934/math.2023891 Google Scholar: Lookup Link · doi:10.3934/math.2023891
[35] M. Rabbani, “New homotopy perturbation method to solve non-linear problems”, J. Math. Comput. Sci. 7:4 (2013), 272-275. Digital Object Identifier: 10.22436/jmcs.07.04.06 Google Scholar: Lookup Link · doi:10.22436/jmcs.07.04.06
[36] M. Rabbani, “Modified homotopy method to solve non-linear integral equations”, Int. J. Nonlinear Anal. Appl. 6:2 (2015), 133-136. Digital Object Identifier: 10.22075/ijnaa.2015.262 Google Scholar: Lookup Link · Zbl 1326.45003 · doi:10.22075/ijnaa.2015.262
[37] M. Rabbani, “An iterative algorithm to find a closed form of solution for Hammerstein nonlinear integral equation constructed by the concept of cosm-rs”, Math. Sci. 13:3 (2019), 299-305. Digital Object Identifier: 10.1007/s40096-019-00299-4 Google Scholar: Lookup Link · Zbl 1447.45007 · doi:10.1007/s40096-019-00299-4
[38] M. Rabbani, A. Das, B. Hazarika, and R. Arab, “Existence of solution for two dimensional nonlinear fractional integral equation by measure of noncompactness and iterative algorithm to solve it”, J. Comput. Appl. Math. 370 (2020), art. id. 112654. Digital Object Identifier: 10.1016/j.cam.2019.112654 Google Scholar: Lookup Link · Zbl 1443.45007 · doi:10.1016/j.cam.2019.112654
[39] M. Rabbani, J. H. He, and M. Düz, “Some computational convergent iterative algorithms to solve nonlinear problems”, Math. Sci. 17:2 (2023), 145-156. Digital Object Identifier: 10.1007/s40096-021-00448-8 Google Scholar: Lookup Link · Zbl 07695267 · doi:10.1007/s40096-021-00448-8
[40] B. Rzepka and K. Sadarangani, “On solutions of an infinite system of singular integral equations”, Math. Comput. Modelling 45:9-10 (2007), 1265-1271. Digital Object Identifier: 10.1016/j.mcm.2006.11.006 Google Scholar: Lookup Link · Zbl 1134.45003 · doi:10.1016/j.mcm.2006.11.006
[41] A. Samadi, “Applications of measure of noncompactness to coupled fixed points and systems of integral equations”, Miskolc Math. Notes 19:1 (2018), 537-553. Digital Object Identifier: 10.18514/mmn.2018.2532 Google Scholar: Lookup Link · Zbl 1413.47075 · doi:10.18514/mmn.2018.2532
[42] B. Samet, “Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces”, Nonlinear Anal. 72:12 (2010), 4508-4517. Digital Object Identifier: 10.1016/j.na.2010.02.026 Google Scholar: Lookup Link · Zbl 1264.54068 · doi:10.1016/j.na.2010.02.026
[43] S. Wang and P. Yu, “Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation”, Chaos Solitons Fractals 26:5 (2005), 1317-1335. Digital Object Identifier: 10.1016/j.chaos.2005.03.010 Google Scholar: Lookup Link · Zbl 1098.37057 · doi:10.1016/j.chaos.2005.03.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.