×

Level set-fitted polytopal meshes with application to structural topology optimization. (English) Zbl 07894792

Summary: We propose a method to modify a polygonal mesh in order to fit the zero-isoline of a level set function by extending a standard body-fitted strategy to a tessellation with arbitrarily-shaped elements. The novel level set-fitted approach, in combination with a Discontinuous Galerkin finite element approximation, provides an ideal setting to model physical problems characterized by embedded or evolving complex geometries, since it allows us skipping any mesh post-processing in terms of grid quality. The proposed methodology is firstly assessed on the linear elasticity equation, by verifying the approximation capability of the level set-fitted approach when dealing with configurations with heterogeneous material properties. Successively, we combine the level set-fitted methodology with a minimum compliance topology optimization technique, in order to deliver optimized layouts exhibiting crisp boundaries and reliable mechanical performances. An extensive numerical test campaign confirms the effectiveness of the proposed method.

MSC:

65-XX Numerical analysis
74-XX Mechanics of deformable solids

Software:

PolyMesher; PolyTop

References:

[1] Osher, S.; Fedkiw, R. P., Level set methods: an overview and some recent results, J. Comput. Phys., 169, 2, 463-502, 2001 · Zbl 0988.65093
[2] (Sevilla, R.; Perotto, S.; Morgan, K., Mesh Generation and Adaptation. Cutting-Edge Techniques. Mesh Generation and Adaptation. Cutting-Edge Techniques, SEMA SIMAI Springer, vol. 30, 2022, Springer: Springer Cham) · Zbl 1487.65003
[3] Gibou, F.; Chen, L.; Nguyen, D.; Banerjee, S., A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change, J. Comput. Phys., 222, 2, 536-555, 2007 · Zbl 1158.76403
[4] Samson, C.; Blanc-Féraud, L.; Aubert, G.; Zerubia, J., A level set model for image classification, Int. J. Comput. Vis., 40, 3, 187-197, 2000 · Zbl 1012.68706
[5] Kim, K. C.; Cho, H. C.; Jang, T. J.; Choi, J. M.; Seo, J. K., Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation, Comput. Methods Programs Biomed., 200, Article 105833 pp., 2021
[6] van Dijk, N. P.; Maute, K.; Langelaar, M.; van Keulen, F., Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim., 48, 3, 437-472, 2013
[7] Gibou, F.; Fedkiw, R.; Osher, S., A review of level-set methods and some recent applications, J. Comput. Phys., 353, 82-109, 2018 · Zbl 1380.65196
[8] Zhao, L.; Mao, J.; Bai, X.; Liu, X.; Li, T.; Williams, J., Finite element implementation of an improved conservative level set method for two-phase flow, Comput. Fluids, 100, 138-154, 2014 · Zbl 1391.76376
[9] Sheu, T. W.H.; Yu, C. H.; Chiu, P. H., Development of level set method with good area preservation to predict interface in two-phase flows, Int. J. Numer. Methods Fluids, 67, 1, 109-134, 2011 · Zbl 1303.76108
[10] El Aouad, S.; Larcher, A.; Hachem, E., Anisotropic adaptive body-fitted meshes for CFD, Comput. Methods Appl. Mech. Eng., 400, Article 115562 pp., 2022 · Zbl 1507.76099
[11] Antepara, O.; Balcázar, N.; Oliva, A., Tetrahedral adaptive mesh refinement for two-phase flows using conservative level-set method, Int. J. Numer. Methods Fluids, 93, 2, 481-503, 2020
[12] Cortellessa, D.; Ferro, N.; Perotto, S.; Micheletti, S., Enhancing level set-based topology optimization with anisotropic graded meshes, Appl. Math. Comput., 447, Article 127903 pp., 2023 · Zbl 1511.74050
[13] Zhuang, Z.; Xie, Y. M.; Zhou, S., A reaction diffusion-based level set method using body-fitted mesh for structural topology optimization, Comput. Methods Appl. Mech. Eng., 381, Article 113829 pp., 2021 · Zbl 1506.74460
[14] Allaire, G.; Dapogny, C.; Frey, P., Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh, C. R. Math., 349, 17-18, 999-1003, 2011 · Zbl 1368.74045
[15] Balarac, G.; Basile, F.; Bénard, P.; Bordeu, F.; Chapelier, J.-B.; Cirrottola, L.; Caumon, G.; Dapogny, C.; Frey, P.; Froehly, A.; Ghigliotti, G.; Laraufie, R.; Lartigue, G.; Legentil, C.; Mercier, R.; Moureau, V.; Nardoni, C.; Pertant, S.; Zakari, M., Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing, MathS in Action, 11, 2, 129-164, 2022 · Zbl 1498.76051
[16] Feppon, F.; Allaire, G.; Dapogny, D.; Jolivet, P., Topology optimization of thermal fluid-structure systems using body-fitted meshes and parallel computing, J. Comput. Phys., 109574, 2020 · Zbl 1437.74021
[17] Cangiani, A.; Dong, Z.; Georgoulis, E. H.; Houston, P., hp-Version Discontinuous Galerkin Methods on Polytopic Meshes, SpringerBriefs in Mathematics, 2017, Springer International Publishing: Springer International Publishing Switzerland · Zbl 1382.65307
[18] Cangiani, A.; Georgoulis, E. H.; Houston, P., hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24, 10, 2009-2041, 2014 · Zbl 1298.65167
[19] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 4-5, 401-424, 2007
[20] Christiansen, A. N.; Nobel-Jørgensen, M.; Aage, N.; Sigmund, O.; Bærentzen, J. A., Topology optimization using an explicit interface representation, Struct. Multidiscip. Optim., 49, 2, 387-399, 2014
[21] Li, H.; Kondoh, T.; Jolivet, P.; Furuta, K.; Yamada, T.; Zhu, B.; Izui, K.; Nishiwaki, S., Three-dimensional topology optimization of a fluid-structure system using body-fitted mesh adaption based on the level-set method, Appl. Math. Model., 101, 276-308, 2022 · Zbl 1481.74620
[22] Nardoni, C.; Danan, D.; Mang, C.; Bordeu, F.; Cortial, J., A R&D software platform for shape and topology optimization using body-fitted meshes, (Sevilla, R.; Perotto, S.; Morgan, K., Mesh Generation and Adaptation, 2022, Springer International Publishing), 23-39 · Zbl 1507.65269
[23] Zhuang, Z.; Xie, Y. M.; Li, Q.; Zhou, S., A 172-line Matlab code for structural topology optimization in the body-fitted mesh, Struct. Multidiscip. Optim., 66, 1, 2022
[24] Andreasen, C. S.; Elingaard, M. O.; Aage, N., Level set topology and shape optimization by density methods using cut elements with length scale control, Struct. Multidiscip. Optim., 62, 2, 685-707, 2020
[25] Yamasaki, S.; Nomura, T.; Kawamoto, A.; Sato, K.; Nishiwaki, S., A level set-based topology optimization method targeting metallic waveguide design problems, Int. J. Numer. Methods Eng., 87, 9, 844-868, 2011 · Zbl 1242.78042
[26] Feppon, F.; Allaire, G.; Dapogny, D.; Jolivet, P., Body-fitted topology optimization of 2d and 3d fluid-to-fluid heat exchangers, Comput. Methods Appl. Mech. Eng., 376, Article 113638 pp., 2021 · Zbl 1506.74270
[27] Feppon, F.; Dapogny, C., Shape optimization using a level set based mesh evolution method: an overview and tutorial, C. R. Math., 361, 1267-1332, 2023 · Zbl 1533.49030
[28] Feppon, F.; Allaire, G.; Bordeu, F.; Cortial, J.; Dapogny, C., Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework, SeMA J., 76, 413, 2019 · Zbl 1422.49038
[29] Kuci, E.; Jansen, M.; Coulaud, O., Level set topology optimization of synchronous reluctance machines using a body-fitted mesh representation, Struct. Multidiscip. Optim., 64, 6, 3729-3745, 2021
[30] Villanueva, C. H.; Maute, K., Density and level set-XFEM schemes for topology optimization of 3-D structures, Comput. Mech., 54, 1, 133-150, 2014 · Zbl 1384.74046
[31] Sharma, A.; Maute, K., Stress-based topology optimization using spatial gradient stabilized XFEM, Struct. Multidiscip. Optim., 57, 1, 17-38, 2017
[32] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., Polygonal finite elements for topology optimization: a unifying paradigm, Int. J. Numer. Methods Eng., 82, 6, 671-698, 2009 · Zbl 1188.74072
[33] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes, Struct. Multidiscip. Optim., 45, 3, 329-357, 2012 · Zbl 1274.74402
[34] Wei, P.; Paulino, G. H., A parameterized level set method combined with polygonal finite elements in topology optimization, Struct. Multidiscip. Optim., 61, 5, 1913-1928, 2020
[35] Antonietti, P.; Bruggi, M.; Scacchi, S.; Verani, M., On the virtual element method for topology optimization on polygonal meshes: a numerical study, Comput. Math. Appl., 74, 5, 1091-1109, 2017 · Zbl 1391.74205
[36] Tran, M. T.; Nguyen, M. N.; Bui, T. Q.; Nguyen, H. Q., An enhanced proportional topology optimization with virtual elements: formulation and numerical implementation, Finite Elem. Anal. Des., 222, Article 103958 pp., 2023
[37] Nguyen, S. H.; Sohn, D.; Kim, H.-G., A novel hr-adaptive mesh refinement scheme for stress-constrained shape and topology optimization using level-set-based trimmed meshes, Struct. Multidiscip. Optim., 65, 2, 2022
[38] Nguyen, S. H.; Kim, H.-G., Level set based shape optimization using trimmed hexahedral meshes, Comput. Methods Appl. Mech. Eng., 345, 555-583, 2019 · Zbl 1440.74336
[39] Hoshina, T. Y.S.; Menezes, I. F.M.; Pereira, A., A simple adaptive mesh refinement scheme for topology optimization using polygonal meshes, J. Braz. Soc. Mech. Sci. Eng., 40, 7, 2018
[40] Chau, K. N.; Chau, K. N.; Ngo, T.; Hackl, K.; Nguyen-Xuan, H., A polytree-based adaptive polygonal finite element method for multi-material topology optimization, Comput. Methods Appl. Mech. Eng., 332, 712-739, 2018 · Zbl 1440.74382
[41] Antonietti, P. F.; Giani, S.; Houston, P., hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains, SIAM J. Sci. Comput., 35, 3, A1417-A1439, 2013 · Zbl 1284.65163
[42] Cangiani, A.; Dong, Z.; Georgoulis, E. H., hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes, SIAM J. Sci. Comput., 39, 4, A1251-A1279, 2017 · Zbl 1371.65106
[43] Antonietti, P. F.; Cangiani, A.; Collis, J.; Dong, Z.; Georgoulis, E. H.; Giani, S.; Houston, P., Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains, (Lecture Notes in Computational Science and Engineering, 2016, Springer International Publishing), 281-310 · Zbl 1357.65251
[44] Antonietti, P. F.; Facciolà, C.; Houston, P.; Mazzieri, I.; Pennesi, G.; Verani, M., High-order discontinuous Galerkin methods on polyhedral grids for geophysical applications: seismic wave propagation and fractured reservoir simulations, (Polyhedral Methods in Geosciences, 2021, Springer International Publishing), 159-225 · Zbl 1470.86002
[45] Gould, P. L., Introduction to Linear Elasticity, 1994, Springer-Verlag: Springer-Verlag New York
[46] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779, 2001-2002 · Zbl 1008.65080
[47] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Frontiers in Applied Mathematics, vol. 35, 2008, Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, United States · Zbl 1153.65112
[48] Berggren, M.; Kasolis, F., Weak material approximation of holes with traction-free boundaries, SIAM J. Numer. Anal., 50, 4, 1827-1848, 2012 · Zbl 1253.35176
[49] Allaire, G.; Jouve, F.; Toader, A.-M., A level-set method for shape optimization, C. R. Math., 334, 12, 1125-1130, 2002 · Zbl 1115.49306
[50] Rozvany, G. I.N., A critical review of established methods of structural topology optimization, Struct. Multidiscip. Optim., 37, 217-237, 2009 · Zbl 1274.74004
[51] Sigmund, O.; Maute, K., Topology optimization approaches: a comparative review, Struct. Multidiscip. Optim., 48, 1031-1055, 2013
[52] Bendsøe, M.; Sigmund, O., Topology Optimization: Theory, Methods and Applications, 2004, Springer: Springer Berlin · Zbl 1059.74001
[53] Alaimo, G.; Auricchio, F.; Conti, M.; Zingales, M., Multi-objective optimization of nitinol stent design, Med. Eng. Phys., 47, 13-24, 2017
[54] Collet, M.; Noël, L.; Bruggi, M.; Duysinx, P., Topology optimization for microstructural design under stress constraints, Struct. Multidiscip. Optim., 58, 6, 2677-2695, 2018
[55] Ferro, N.; Perotto, S.; Bianchi, D.; Ferrante, R.; Mannisi, M., Design of cellular materials for multiscale topology optimization: application to patient-specific orthopedic devices, Struct. Multidiscip. Optim., 65, 3, 79, 2022
[56] Huang, X.; Xie, Y.; Jia, B.; Li, Q.; Zhou, S., Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity, Struct. Multidiscip. Optim., 46, 3, 385-398, 2012 · Zbl 1274.78096
[57] Gavazzoni, M.; Ferro, N.; Perotto, S.; Foletti, S., Multi-physics inverse homogenization for the design of innovative cellular materials: application to thermo-elastic problems, Math. Comput. Appl., 27, 1, 15, 2022
[58] Carbonaro, D.; Mezzadri, F.; Ferro, N.; De Nisco, G.; Audenino, A. L.; Gallo, D.; Chiastra, C.; Morbiducci, U.; Perotto, S., Design of innovative self-expandable femoral stents using inverse homogenization topology optimization, Comput. Methods Appl. Mech. Eng., 416, Article 116288 pp., 2023 · Zbl 1536.74169
[59] Liu, J.; Gaynor, A. T.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C. C.L.; Cheng, L.; Liang, X.; To, A. C., Current and future trends in topology optimization for additive manufacturing, Struct. Multidiscip. Optim., 57, 6, 2457-2483, 2018
[60] Ibhadode, O.; Zhang, Z.; Sixt, J.; Nsiempba, K. M.; Orakwe, J.; Martinez-Marchese, A.; Ero, O.; Shahabad, S. I.; Bonakdar, A.; Toyserkani, E., Topology optimization for metal additive manufacturing: current trends, challenges, and future outlook, Virtual Phys. Prototyp., 18, 1, Mar. 2023
[61] Mei, Y.; Wang, X., A level set method for structural topology optimization and its applications, Adv. Eng. Softw., 35, 415-441, 2004 · Zbl 1067.90153
[62] Allaire, G.; Jouve, F.; Maillot, H., Topology optimization for minimum stress design with the homogenization method, Struct. Multidiscip. Optim., 28, 87-98, 2004 · Zbl 1243.74148
[63] Bendsøe, M.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 2, 1988 · Zbl 0671.73065
[64] Yamada, T.; Izui, K.; Nishiwaki, S.; Takezawa, A., A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Methods Appl. Mech. Eng., 199, 45-48, 2876-2891, 2010 · Zbl 1231.74365
[65] Yaji, K.; Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S.; Pironneau, O., Shape and topology optimization based on the convected level set method, Struct. Multidiscip. Optim., 54, 3, 659-672, 2016
[66] Ferro, N.; Micheletti, S.; Perotto, S., An optimization algorithm for automatic structural design, Comput. Methods Appl. Mech. Eng., 372, Article 113335 pp., 2020 · Zbl 1506.74274
[67] Ceze, M.; Fidkowski, K. J., Constrained pseudo-transient continuation, Int. J. Numer. Methods Eng., 102, 11, 1683-1703, 2015 · Zbl 1352.65479
[68] Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S., Matlab code for a level set-based topology optimization method using a reaction diffusion equation, Struct. Multidiscip. Optim., 51, 5, 1159-1172, 2014
[69] Leoni, G.; Murray, R., Second-order Γ-limit for the Cahn-Hilliard functional, Arch. Ration. Mech. Anal., 219, 1383-1451, 2016 · Zbl 1356.49016
[70] Sokolowski, J.; Zochowski, A., Topological Derivative in Shape Optimization, Encyclopedia of Optimization, 3908-3918, 2009
[71] Novotny, A.; Feijóo, R.; Taroco, E.; Padra, C., Topological sensitivity analysis, Comput. Methods Appl. Mech. Eng., 192, 803-829, 2003 · Zbl 1025.74025
[72] Pietro, D. A.D.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, 2012, Springer: Springer Berlin Heidelberg · Zbl 1231.65209
[73] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760, 1982 · Zbl 0482.65060
[74] Wheeler, M. F., An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15, 1, 152-161, 1978 · Zbl 0384.65058
[75] Li, H.; Yu, M.; Jolivet, P.; Alexandersen, J.; Kondoh, T.; Hu, T.; Furuta, K.; Izui, K.; Nishiwaki, S., Reaction-diffusion equation driven topology optimization of high-resolution and feature-rich structures using unstructured meshes, Adv. Eng. Softw., 180, Article 103457 pp., 2023
[76] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328, 2012 · Zbl 1274.74401
[77] Hölz, S., Polygon clipper, retrieved October, 2022 (2006)
[78] Ferro, N.; Micheletti, S.; Perotto, S., Compliance-stress constrained mass minimization for topology optimization on anisotropic meshes, SN Appl. Sci., 2, 1196, 2020
[79] Antonietti, P.; Bonetti, S.; Botti, M.; Corti, M.; Fumagalli, I.; Mazzieri, I., Lymph: discontinuous poLYtopal methods for Multi-PHysics differential problems, 2024
[80] Antonietti, P.; Bonetti, S.; Botti, M.; Corti, M.; Fumagalli, I.; Mazzieri, I., Lymph, 2024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.