×

Two-grid methods for nonlinear pseudo-parabolic integro-differential equations by finite element method. (English) Zbl 07894779

Summary: In this paper, two efficient two-grid finite element algorithms are proposed for solving two-dimensional nonlinear pseudo-parabolic integro-differential equations. Firstly, we obtain optimal error estimates of the fully discrete finite element method using a temporal-spatial error splitting technique in \(H^1\) and \(L^p\) norms. Then the two-grid technique to improve computation efficiency of the proposed finite element method. Error estimates in \(H^1\) and \(L^p\) norms of two-grid solutions are presented. Theoretical analysis shows that the two-grid algorithms maintain asymptotically optimal accuracy. Finally, numerical examples are provided to support our theoretical results and demonstrate the effectiveness of these methods.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics
Full Text: DOI

References:

[1] Barenblatt, G.; Zheltov, I.; Kochina, I., Basic concepts in the theory of seepage of homogenous liquids in fissured rocks, J. Appl. Math. Mech., 24, 1286-1303, 1960 · Zbl 0104.21702
[2] Chen, P.; Gurtin, M., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19, 614-627, 1968 · Zbl 0159.15103
[3] Cui, S., Global solutions for a class of nonlinear integro-differential equations, Acta Math. Appl. Sin., 16, 191-200, 1993 · Zbl 0776.45006
[4] Wang, S., On the initial boundary value problem and initial value problem for the semilinear pseuo-hyperbolic integro-differential equation, Acta Math. Appl. Sin., 18, 567-578, 1995 · Zbl 0862.45010
[5] Zhou, Z.; Che, H., H^1-Galerkin mixed finite element methods for pseudo-parabolic integro-differential equations, J. Shandong Norm. Univ. Nat. Sci., 20, 3-7, 2005
[6] Che, H., Error estimates for mixed finite element methods for pseudo-parabolic intergo-difierential equations, Chin. J. Eng. Math., 26, 1033-1038, 2009
[7] Feng, Z.; Li, H.; Liu, Y.; He, S., An adaptive least-squares mixed finite element method for pseudo-parabolic integro-differential equations, World Acad. Sci., Eng. Technol., 60, 1718-1725, 2011
[8] Cui, X., Sobolev-Volterra projection and numerical analysis of finite element methods for integro-differential equations, Acta Math. Appl. Sin., 24, 441-455, 2001 · Zbl 0991.65149
[9] Che, H.; Zhou, Z.; Jiang, Z.; Wang, Y., H^1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods Partial Differ. Equ., 29, 799-817, 2013 · Zbl 1270.65077
[10] Di, H.; Shang, Y.; Zheng, X., Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst., Ser. B, 21, 781-801, 2017 · Zbl 1331.35204
[11] Xu, J., A novel two-grid method for semilinear equations, SIAM J. Sci. Comput., 15, 231-237, 1994 · Zbl 0795.65077
[12] Xu, J., Two-grid discretization techniques for linear and non-linear PDEs, SIAM J. Numer. Anal., 33, 1759-1777, 1996 · Zbl 0860.65119
[13] Wu, L.; Allen, M., A two-grid method for mixed finite-element solution of reaction-diffusion equations, Numer. Methods Partial Differ. Equ., 15, 317-332, 1999 · Zbl 0929.65079
[14] Holst, M.; Szypowski, R.; Zhu, Y., Two-grid methods for semilinear interface problems, Numer. Methods Partial Differ. Equ., 29, 1729-1748, 2013 · Zbl 1274.65299
[15] Chen, Y.; Huang, Y.; Yu, D., A two-grid method for expanded mixed finite element solution of semilinear reaction-diffusion equations, Int. J. Numer. Methods Eng., 57, 193-209, 2003 · Zbl 1062.65104
[16] Chen, Y.; Liu, H.; Liu, S., Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods, Int. J. Numer. Methods Eng., 69, 408-422, 2007 · Zbl 1194.76107
[17] Chen, Y.; Hu, H., Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics, Commun. Comput. Phys., 19, 1503-1528, 2016 · Zbl 1373.76079
[18] Chen, Y.; Wang, Y.; Huang, Y.; Fu, L., Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems, Appl. Numer. Math., 144, 204-222, 2019 · Zbl 1450.65117
[19] Chen, Y.; Li, Q.; Wang, Y.; Huang, Y., Two-grid methods of finite element solutions for semi-linear elliptic interface problems, Numer. Algorithms, 84, 307-330, 2020 · Zbl 1465.65161
[20] Chen, Y.; Gu, Q.; Li, Q.; Huang, Y., A two-grid finite element approximation for nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations, J. Comput. Math., 40, 938-956, 2022 · Zbl 1513.65353
[21] Bi, C.; Ginting, V., Two-grid discontinuous Galerkin method for quasi-linear elliptic problems, J. Sci. Comput., 49, 311-331, 2011 · Zbl 1251.65157
[22] Zhou, J.; Hu, X.; Zhong, L.; Shu, S.; Chen, L., Two-grid methods for Maxwell eigenvalue problems, SIAM J. Numer. Anal., 52, 2027-2047, 2014 · Zbl 1304.78015
[23] Liu, Y.; Du, Y.; Li, H.; Wang, J., A two-grid finite element approximation for a nonlinear time-fractional cable equation, Nonlinear Dyn., 85, 2535-2548, 2016 · Zbl 1349.65429
[24] Li, K.; Tan, Z., A two-grid algorithm of fully discrete Galerkin finite element methods for a nonlinear hyperbolic equation, Numer. Math. Theory Methods Appl., 13, 1050-1067, 2020 · Zbl 1474.65356
[25] Tan, Z.; Li, K.; Chen, Y., A fully discrete two-grid finite element method for nonlinear hyperbolic integro-differential equation, Appl. Math. Comput., 413, Article 126596 pp., 2022 · Zbl 1510.65331
[26] Zhong, L.; Xuan, Y.; Cui, J., Two-grid discontinuous Galerkin method for convection-diffusion-reaction equations, J. Comput. Appl. Math., 404, Article 113903 pp., 2022 · Zbl 1490.65294
[27] Wang, W., Long-time behavior of the two-grid finite element method for fully discrete semilinear evolution equations with positive memory, J. Comput. Appl. Math., 250, 161-174, 2013 · Zbl 1285.65064
[28] Wang, W.; Hong, Q., Two-grid economical algorithms for parabolic integro-differential equations with nonlinear memory, Appl. Numer. Math., 142, 28-46, 2019 · Zbl 1426.65185
[29] Wang, K., A two-gird method for finite element solution of parabolic integro-differential equations, J. Appl. Math. Comput., 2021, 1-18, 2021
[30] Li, B.; Sun, W., Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations, Int. J. Numer. Anal. Model., 10, 622-633, 2013 · Zbl 1281.65122
[31] Lin, Y.; Thomée, V.; Wahlbin, L., Ritz-Volterra projection to finite-element spaces and application to integro-differential and related equations, SIAM J. Numer. Anal., 28, 1047-1070, 1991 · Zbl 0728.65117
[32] Lin, Y., Galerkin methods for nonlinear Sobolev equations, Aequ. Math., 40, 54-66, 1990 · Zbl 0718.65067
[33] Zhang, T.; Lin, Y., \( L^\infty \)-error bounds for some nonliner integro-differential equations by finite element approximations, Math. Numer. Sin., 13, 177-186, 1991 · Zbl 0850.65363
[34] Brenner, S.; Scott, L., The Mathematics Theory of Finite Element Methods, 2008, Spring-Verlag: Spring-Verlag New York · Zbl 1135.65042
[35] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, 1984, Springer-Verlag · Zbl 0528.65052
[36] Chen, Y.; Wu, L., Second Order Elliptic Equations and Elliptic Systems, 1998, American Mathematical Soc. · Zbl 0902.35003
[37] Larson, M.; Bengzon, F., The Finite Element Method: Theory, Implementation, and Applications, 2013, Springer Science+Business Media · Zbl 1263.65116
[38] Ewing, R.; Wheeler, M., Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 17, 351-365, 1980 · Zbl 0458.76092
[39] Lai, X.; Yuan, Y., Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems, Comput. Math. Appl., 57, 384-403, 2009 · Zbl 1165.65391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.